Abstract

Double-sided lapping (DSL) is always employed as a precision process for machining flat workpieces, such as optical windows, wafers, and brake pads taking advantage of its high efficiency and parallelism. However, the mechanism of parallelism error reduced by the DSL process was rarely investigated. Furthermore, the relationship between parallelism and flatness was not clearly illustrated. To explain why the parallelism of workpieces becomes convergent by the DSL, a theoretical model has been developed in this paper by calculating the parallelism evolution with the consideration of various contact situations between workpieces and lapping plates for the first time. Moreover, five workpieces, including a slanted and four parallel ones, are applied to develop the parallelism evolution guaranteeing the model close to the actual process, and the mechanism of the parallelism error reduced by the DSL process is elucidated. The calculation result revealed that the parallelism was improved from 100.0 µm to 25.6 µm according to the proposed model. The experimental results showed that the parallelism error reduced from 108.6 µm to 28.2 µm, which was consistent with the calculation results.

References

1.
Chen
,
C. C. A.
, and
Hsu
,
L. S.
,
2008
, “
A Process Model of Wafer Thinning by Diamond Grinding
,”
J. Mater. Process. Technol.
,
201
(
1–3
), pp.
606
611
.
2.
Kim
,
Y. S.
,
Maeda
,
N.
,
Kitada
,
H.
,
Fujimoto
,
K.
,
Kodama
,
S.
,
Kawai
,
A.
,
Arai
,
K.
,
Suzuki
,
K.
,
Nakamura
,
T.
, and
Ohba
,
T.
,
2013
, “
Advanced Wafer Thinning Technology and Feasibility Test for 3D Integration
,”
Microelectron. Eng.
,
107
, pp.
65
71
.
3.
Lee
,
T.
,
Jeong
,
H.
,
Kim
,
H.
,
Lee
,
S.
, and
Kim
,
D.
,
2016
, “
Effect of Platen Shape on Evolution of Total Thickness Variation in Single-Sided Lapping of Sapphire Wafer
,”
Int. J. Precis. Eng. Manuf-Green. Technol.
,
3
(
3
), pp.
225
229
.
4.
Vannoni
,
M.
, and
Bertozzi
,
R.
,
2007
, “
Parallelism Error Characterization With Mechanical and Interferometric Methods
,”
Opt. Laser. Eng.
,
45
(
6
), pp.
719
722
.
5.
Shi
,
J.
,
Wu
,
Q.
,
Zhang
,
J.
,
Huang
,
Y.
,
Yang
,
X.
, and
Ding
,
Y.
,
2012
, “
Thermal Optical Analysis for Optical Window of High-Altitude and High-Speed Aerial Camera
,”
Acta Opt. Sin.
,
32
(
4
), p.
0422004
.
6.
Feng
,
J.
,
Jing
,
F.
, and
Zhang
,
G.
,
1997
, “
Dynamic Ductile Fragmentation and the Damage Function Model
,”
J. Appl. Phys.
,
81
(
6
), pp.
2575
2578
.
7.
Marks
,
M. R.
,
Hassan
,
Z.
, and
Cheong
,
K. Y.
,
2015
, “
Ultrathin Wafer Pre-Assembly and Assembly Process Technologies: A Review
,”
Crit. Rev. Solid. State
,
40
(
5
), pp.
251
290
.
8.
Goel
,
S.
,
Luo
,
X. C.
,
Reuben
,
R. L.
, and
Pen
,
H. M.
,
2012
, “
Influence of Temperature and Crystal Orientation on Tool Wear During Single Point Diamond Turning of Silicon
,”
Wear
,
284–285
, pp.
65
72
.
9.
Mukaida
,
M.
, and
Yan
,
J. W.
,
2017
, “
Ductile Machining of Single-Crystal Silicon for Microlens Arrays by Ultraprecision Diamond Turning Using a Slow Tool Servo
,”
Int. J. Mach. Tools Manuf.
,
115
, pp.
2
14
.
10.
Patten
,
J. A.
, and
Jacob
,
J.
,
2008
, “
Comparison Between Numerical Simulations and Experiments for Single-Point Diamond Turning of Single-Crystal Silicon Carbide
,”
J. Manuf. Process.
,
10
(
1
), pp.
28
33
.
11.
Sun
,
Z.
,
To
,
S.
, and
Zhang
,
S.
,
2018
, “
A Novel Ductile Machining Model of Single-Crystal Silicon for Freeform Surfaces With Large Azimuthal Height Variation by Ultra-Precision Fly Cutting
,”
Int. J. Mach. Tools Manuf.
,
135
, pp.
1
11
.
12.
Zhang
,
G.
,
Ran
,
J.
,
To
,
S.
,
Wu
,
X.
,
Huang
,
P.
, and
Kuzmin
,
M. P.
,
2020
, “
Size Effect on Surface Generation of Multiphase Alloys in Ultra-Precision Fly Cutting
,”
J. Manuf. Process.
,
60
, pp.
23
36
.
13.
Zhang
,
S. J.
,
To
,
S.
,
Zhu
,
Z. W.
, and
Zhang
,
G. Q.
,
2016
, “
A Review of Fly Cutting Applied to Surface Generation in Ultra-Precision Machining
,”
Int. J. Mach. Tools Manuf.
,
103
, pp.
13
27
.
14.
Bai
,
K.
,
Qin
,
J.
,
Lee
,
K. M.
, and
Hao
,
B.
,
2019
, “
Design and Chatter Prediction Analysis of a Duplex Face Turning Machine for Manufacturing Disk-Like Workpieces
,”
Int. J. Mach. Tools Manuf.
,
140
, pp.
12
19
.
15.
Deja
,
M.
,
Lichtschlag
,
L.
, and
Uhlmann
,
E.
,
2021
, “
Thermal and Technological Aspects of Double Face Grinding of C45 Carbon Steel
,”
J. Manuf. Process.
,
64
, pp.
1036
1046
.
16.
Li
,
Z.
,
Deng
,
Z.
, and
Hu
,
Y.
,
2020
, “
Effects of Polishing Parameters on Surface Quality in Sapphire Double-Sided CMP
,”
Ceram. Int.
,
46
(
9
), pp.
13356
13364
.
17.
Guo
,
J.
,
Wang
,
B.
,
He
,
Z. X.
,
Pan
,
B.
,
Du
,
D. X.
,
Huang
,
W.
, and
Kang
,
R. K.
,
2021
, “
A Novel Method for Workpiece Deformation Prediction by Amending Initial Residual Stress Based on SVR-GA
,”
Adv. Manuf.
,
9
(
4
), pp.
483
495
.
18.
Klamecki
,
B. E.
,
2001
, “
Comparison of Material Removal Rate Models and Experimental Results for the Double-Sided Polishing Process
,”
J. Mater. Process. Technol.
,
109
(
3
), pp.
248
253
.
19.
Mahamad Sahab
,
A. R.
,
Saad
,
N. H.
,
Rashid
,
A. A.
,
Yusoff
,
N.
,
Said
,
N. M.
,
Zubair
,
A. F.
, and
Jaffar
,
A.
,
2013
, “
Effect of Double Sided Process Parameters in Lapping Silicon Wafer
,”
Appl. Mech. Mater.
,
393
, pp.
259
265
.
20.
Kasai
,
T.
,
2008
, “
A Kinematic Analysis of Disk Motion in a Double Sided Polisher for Chemical Mechanical Planarization (CMP)
,”
Tribol. Int.
,
41
(
2
), pp.
111
118
.
21.
Wang
,
L. J.
,
Hu
,
Z. W.
,
Yu
,
Y. Q.
, and
Xu
,
X. P.
,
2018
, “
Evaluation of Double-Sided Planetary Grinding Using Diamond Wheels for Sapphire Substrates
,”
Crystals.
,
8
(
7
), p.
13
.
22.
Qi
,
Z. Q.
,
Lu
,
W. J.
, and
Lee
,
W. M.
,
2014
, “
A Hydrodynamic and Kinematic Analysis of Chemical-Mechanical Planarization Mechanism in Double Sided Polisher
,”
Int. J. Mach. Tools Manuf.
,
82–83
, pp.
59
67
.
23.
Li
,
Z. C.
,
Pei
,
Z. J.
, and
Fisher
,
G. R.
,
2006
, “
Simultaneous Double Side Grinding of Silicon Wafers: A Literature Review
,”
Int. J. Mach. Tool. Manuf.
,
46
(
12–13
), pp.
1449
1458
.
24.
Pietsch
,
G. J.
, and
Kerstan
,
M.
,
2005
, “
Understanding Simultaneous Double-Disk Grinding: Operation Principle and Material Removal Kinematics in Silicon Wafer Planarization
,”
Precis. Eng.
,
29
(
2
), pp.
189
196
.
25.
Hirose
,
K.
, and
Enomoto
,
T.
,
2009
, “
Optimization of Double-Sided Polishing Conditions to Achieve High Flatness: Consideration of Relative Motion Direction
,”
Int. J. Auto. Technol.
,
3
(
5
), pp.
581
591
.
26.
Li
,
S.
,
Wang
,
Z.
, and
Wu
,
Y.
,
2008
, “
Relationship Between Subsurface Damage and Surface Roughness of Optical Materials in Grinding and Lapping Processes
,”
J. Mater. Process. Technol.
,
205
(
1–3
), pp.
34
41
.
27.
Kim
,
H. M.
,
Manivannan
,
R.
,
Moon
,
D. J.
,
Xiong
,
H.
, and
Park
,
J. G.
,
2013
, “
Evaluation of Double Sided Lapping Using a Fixed Abrasive Pad for Sapphire Substrates
,”
Wear
,
302
(
1–2
), pp.
1340
1344
.
28.
Wang
,
L. J.
,
Hu
,
Z. W.
,
Chen
,
Y.
,
Yu
,
Y. Q.
, and
Xu
,
X. P.
,
2020
, “
Material Removal Mechanism of Sapphire Substrates With Four Crystal Orientations by Double-Sided Planetary Grinding
,”
Ceram. Int.
,
46
(
6
), pp.
7813
7822
.
29.
Kim
,
H. M.
,
Park
,
G. H.
,
Seo
,
Y. G.
,
Moon
,
D. J.
,
Cho
,
B. J.
, and
Park
,
J. G.
,
2015
, “
Comparison Between Sapphire Lapping Processes Using 2-Body and 3-Body Modes as a Function of Diamond Abrasive Size
,”
Wear
,
332–333
, pp.
794
799
.
30.
Yu
,
Y. Q.
,
Hu
,
Z. W.
,
Wang
,
W. S.
,
Zhao
,
H.
,
Lu
,
J.
, and
Xu
,
X. P.
,
2020
, “
The Double-Side Lapping of SiC Wafers With Semifixed Abrasives and Resin–Combined Plates
,”
Int. J. Adv. Manuf. Technol.
,
108
(
4
), pp.
997
1006
.
31.
Gagliardi
,
J. J.
,
Kim
,
D.
,
Sokol
,
J. J.
,
Zazzera
,
L. A.
,
Romero
,
V. D.
,
Atkinson
,
M. R.
,
Nabulsi
,
F.
, and
Zhang
,
H.
,
2013
, “
A Case for 2-Body Material Removal in Prime LED Sapphire Substrate Lapping and Polishing
,”
J. Manuf. Process.
,
15
(
3
), pp.
348
354
.
32.
Lai
,
Z.
,
Hu
,
Z.
,
Fang
,
C.
,
Xiao
,
Z.
,
Hsieh
,
P.
, and
Chen
,
M.
,
2019
, “
Study on the Wear Characteristics of a Lapping Wheel in Double-Sided Lapping Based on the Trajectory Distribution
,”
IEEE Trans. Semicond. Manuf.
,
32
(
3
), pp.
352
358
.
33.
Wang
,
L. J.
,
Hu
,
Z. W.
,
Fang
,
C. F.
,
Yu
,
Y. Q.
, and
Xu
,
X. P.
,
2018
, “
Study on the Double-Sided Grinding of Sapphire Substrates With the Trajectory Method
,”
Precis. Eng.
,
51
, pp.
308
318
.
34.
Li
,
H. N.
,
Yang
,
Y.
,
Zhao
,
Y. J.
,
Zhang
,
Z.
,
Zhu
,
W.
,
Wang
,
W.
, and
Qi
,
H.
,
2019
, “
On the Periodicity of Fixed-Abrasive Planetary Lapping Based on a Generic Model
,”
J. Manuf. Process.
,
44
, pp.
271
287
.
35.
Hashimoto
,
Y.
,
Ozaki
,
R.
,
Furumoto
,
T.
, and
Hosokawa
,
A.
,
2022
, “
A Calculation Method for Workpiece Profile Variation During Double-Sided Lapping by Considering Workpiece Elastic Deformation
,”
Precis. Eng.
,
73
, pp.
457
469
.
36.
Srinivasa-Murthy
,
C.
,
Wang
,
D.
,
Beaudoin
,
S. P.
,
Bibby
,
T.
,
Holland
,
K.
, and
Cale
,
T. S.
,
1997
, “
Stress Distribution in Chemical Mechanical Polishing
,”
Thin. Solid. Films
,
308
, pp.
533
537
.
37.
Zhang
,
P.
,
Yang
,
J. F.
, and
Li
,
L.
,
2020
, “
Trajectory Uniformity of the Double-Sided Mechanical Polishing of SiC Single Crystal Substrate
,”
Mater. Sci. Semicond. Process.
,
107
, p.
11
.
38.
Pan
,
B.
,
Kang
,
R.
,
Guo
,
J.
,
Fu
,
H.
,
Du
,
D.
, and
Kong
,
J.
,
2019
, “
Precision Fabrication of Thin Copper Substrate by Double-Sided Lapping and Chemical Mechanical Polishing
,”
J. Manuf. Process.
,
44
, pp.
47
54
.
39.
Yohei
,
H.
,
Ryota
,
K.
,
Tatsuaki
,
F.
, and
Akira
,
H.
,
2017
, “
Development of Highly Accurate Simulation Model of Wafer Behavior Considering Contact Between Wafer and Carrier During Double-Sided Lapping
,”
Int. J. Jpn. Soc. Precis. Eng.
,
83
(
5
), pp.
433
438
.
40.
Chang
,
R. S.
, and
Chern
,
D. C.
,
1994
, “
Highly Accurate Flatness and Parallelism in the Manufacture of Thin Sapphire Flat Lenses
,”
Opt. Eng.
,
33
(
2
), pp.
620
626
.
41.
Ohmori
,
H.
,
Lin
,
W.
, and
Ueno
,
Y.
,
2005
, “
Work Parallelism Improvement in Double-Sided Lapping on a New Type Lapping Machine
,”
Proc. JSPE Semestrial Meet.
,
J25
, pp.
839
840
.
42.
Hiroki
,
H.
,
Toshio
,
K.
,
Hideaki
,
N.
, and
Masayoshi
,
G.
,
2006
, “
Study on Parallel Improving in Double-Sided Lapping Machine
,”
Proc. JSPE Semestrial Meet.
,
G37
, pp.
509
510
.
43.
McGrath
,
J.
, and
Davis
,
C.
,
2004
, “
Polishing Pad Surface Characterisation in Chemical Mechanical Planarization
,”
J. Mater. Process. Technol.
,
153–154
, pp.
666
673
.
44.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, Britain
.
45.
Pan
,
B.
,
Kang
,
R.
,
Zhu
,
X.
,
Du
,
D.
,
Huang
,
W.
, and
Guo
,
J.
,
2022
, “
Formation Mechanism of Concave and Convex Surface Shapes in Double-Sided Lapping
,”
J. Mater. Process. Technol.
,
309
, p.
11749
.
46.
Wu
,
D.
,
Kang
,
R.
,
Guo
,
J.
,
Liu
,
Z.
,
Wan
,
C.
, and
Jin
,
Z.
,
2019
, “
On the Reaction Mechanism of a Hydroxyethylidene Diphosphonic Acid-Based Electrolyte for Electrochemical Mechanical Polishing of Copper
,”
Electrochem. Commun.
,
103
, pp.
48
54
.
47.
Zhang
,
J.
,
Pan
,
B.
,
Liu
,
H.
,
Zhu
,
X.
,
Kang
,
R.
,
Du
,
D.
, and
Guo
,
J.
,
2022
, “
Parallelism Measurement Method for Nontransparent Flat Parts
,”
Appl. Opt.
,
61
(
17
), pp.
4993
5001
.
You do not currently have access to this content.