Abstract

This study aims to develop an intelligent, rapid porosity prediction methodology for additive manufacturing (AM) processes under varying process conditions by leveraging knowledge transfer from the existing process conditions. Conventional machine learning (ML) algorithms are extensively used in porosity prediction for AM processes. These approaches assume that the underline distribution of the source (training) and target (testing) is the same and that target labels are available for modeling purposes. However, the source and target sometimes follow different distributions in real-world manufacturing environments as the diversity of industrialization processes leads to heterogeneous data collection under different production conditions. This will reduce the ability of decision-making with conventional approaches. Transfer learning (TL) is one of the robust techniques that enables transferring learned knowledge between the target and source to establish a robust relationship while the target has fewer data. Therefore, this paper presents an unsupervised grouping-based transfer learning method to characterize the relationship between an unknown target and sources. The similarities between sources and targets are learned by forming a new mixed domain, which organizes data into identity groups. Then, a group-based learning process is designated to transfer knowledge to make target predictions. The effectiveness of the proposed method is evaluated by predicting porosity based on thermal images collected from the AM process under different process conditions, i.e., single-source and multi-source transfer to target porosity prediction. The performance comparison demonstrates that the in situ porosity prediction using the proposed method outperformed state-of-art classification models support vector machine (SVM), convolutional neural network (CNN), and different TL methods such as TL with NNs (TLNN), and TL with CNNs (TLCNN).

References

1.
Sola
,
A.
, and
Nouri
,
A.
,
2019
, “
Microstructural Porosity in Additive Manufacturing: The Formation and Detection of Pores in Metal Parts Fabricated by Powder Bed Fusion
,”
J. Adv. Manuf. Process.
,
1
(
3
), pp.
1
21
.
2.
Khanzadeh
,
M.
,
Chowdhury
,
S.
,
Marufuzzaman
,
M.
,
Tschopp
,
M. A.
, and
Bian
,
L.
,
2018
, “
Porosity Prediction: Supervised-Learning of Thermal History for Direct Laser Deposition
,”
J. Manuf. Syst.
,
47
, pp.
69
82
.
3.
Khanzadeh
,
M.
,
Chowdhury
,
S.
,
Tschopp
,
M. A.
,
Doude
,
H. R.
,
Marufuzzaman
,
M.
, and
Bian
,
L.
,
2019
, “
In-Situ Monitoring of Melt Pool Images for Porosity Prediction in Directed Energy Deposition Processes
,”
IISE Trans.
,
51
(
5
), pp.
437
455
.
4.
Khanzadeh
,
M.
,
Bian
,
L.
,
Shamsaei
,
N.
, and
Thompson
,
S. M.
,
2016
, “
Porosity Detection of Laser Based Additive Manufacturing Using Melt Pool Morphology Clustering
,”
Solid Freeform Fabrication 2016: Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference, SFF 2016
,
Austin, TX
,
Aug. 8–10
, pp.
1487
1494
.
5.
Plank
,
B.
,
Gusenbauer
,
C.
,
Senck
,
S.
,
Hoeller
,
H.
, and
Kastner
,
J.
,
2010
, “
Porosity Determination in CFRP by Means of X-Ray Computed Tomography Methods
,”
Proceedings of the 2nd International Symposium on NDT in Aerospace
,
Hamburg
, pp.
1
2
. We.1.a.2.
6.
Wang
,
C.
,
Tan
,
X. P.
,
Tor
,
S. B.
, and
Lim
,
C. S.
,
2020
, “
Machine Learning in Additive Manufacturing: State-of-the-Art and Perspectives
,”
Addit. Manuf.
,
36
, p.
101538
.
7.
Pan
,
S. J.
, and
Yang
,
Q.
,
2010
, “
A Survey on Transfer Learning
,”
IEEE Trans. Knowl. Data Eng.
,
22
(
10
), pp.
1345
1359
.
8.
Ben-David
,
S.
,
Blitzer
,
J.
,
Crammer
,
K.
,
Kulesza
,
A.
,
Pereira
,
F.
, and
Vaughan
,
J. W.
,
2010
, “
A Theory of Learning From Different Domains
,”
Mach. Learn.
,
79
(
1–2
), pp.
151
175
.
9.
Persello
,
C.
, and
Bruzzone
,
L.
,
2016
, “
Kernel-Based Domain-Invariant Feature Selection in Hyperspectral Images for Transfer Learning
,”
IEEE Trans. Geosci. Remote Sens.
,
54
(
5
), pp.
2615
2626
.
10.
Long
,
M.
,
Cao
,
Y.
,
Wang
,
J.
, and
Jordan
,
M. I.
,
2015
, “
Learning Transferable Features With Deep Adaptation Networks
,”
Proceedings of the 32nd International Conference on Machine Learning. ICML 2015
,
Lille, France
,
July 6–11
, Vol.
1
, pp.
97
105
.
11.
KumarPatidar
,
A.
,
Agrawal
,
J.
, and
Mishra
,
N.
,
2012
, “
Analysis of Different Similarity Measure Functions and Their Impacts on Shared Nearest Neighbor Clustering Approach
,”
Int. J. Comput. Appl.
,
40
(
16
), pp.
1
5
.
12.
Senanayaka
,
A.
,
Al Mamun
,
A.
,
Bond
,
G.
,
Tian
,
W.
,
Wang
,
H.
,
Fuller
,
S.
,
Falls
,
T. C.
,
Rahimi
,
S.
, and
Bian
,
L.
,
2022
, “
Similarity-Based Multi-Source Transfer Learning Approach for Time Series Classification
,”
Int. J. Progn. Heal. Manage.
,
13
(
2
), pp.
1
25
.
13.
Zhang
,
B.
,
Liu
,
S.
, and
Shin
,
Y. C.
,
2019
, “
In-Process Monitoring of Porosity During Laser Additive Manufacturing Process
,”
Addit. Manuf.
,
28
, pp.
497
505
.
14.
Yosinski
,
J.
,
Clune
,
J.
,
Bengio
,
Y.
, and
Lipson
,
H.
,
2014
, “
How Transferable Are Features in Deep Neural Networks?
,”
Adv. Neural Inf. Process. Syst.
,
27
, pp.
3320
3328
.
15.
Afridi
,
M. J.
,
Ross
,
A.
, and
Shapiro
,
E. M.
,
2016
, “
L-CNN: Exploiting Labeling Latency in a CNN Learning Framework
,”
Proceedings of the 2016 23rd International Conference on Pattern Recognition (ICPR)
,
Cancún, México
,
Dec. 4–8
, pp.
2156
2161
.
16.
Oquab
,
M.
,
Bottou
,
L.
,
Laptev
,
I.
, and
Sivic
,
J.
,
2014
, “
Learning and Transferring Mid-Level Image Representations Using Convolutional Neural Networks
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Columbus, OH
,
June 23–28
, pp.
1717
1724
.
17.
Zhang
,
R. A. N.
,
Tao
,
H.
, and
Wu
,
L.
,
2017
, “
Transfer Learning With Neural Networks for Bearing Fault Diagnosis in Changing Working Conditions
,”
IEEE Access
,
5
, pp.
14347
14357
.
18.
Afridi
,
M. J.
,
Ross
,
A.
, and
Shapiro
,
E. M.
,
2018
, “
On Automated Source Selection for Transfer Learning in Convolutional Neural Networks
,”
Pattern Recognit.
,
73
, pp.
65
75
.
19.
Taud
,
H.
,
Martinez-Angeles
,
R.
,
Parrot
,
J. F.
, and
Hernandez-Escobedo
,
L.
,
2005
, “
Porosity Estimation Method by X-Ray Computed Tomography
,”
J. Pet. Sci. Eng.
,
47
(
3–4
), pp.
209
217
.
20.
Cai
,
X.
,
Malcolm
,
A. A.
,
Wong
,
B. S.
, and
Fan
,
Z.
,
2015
, “
Measurement and Characterization of Porosity in Aluminium Selective Laser Melting Parts Using X-Ray CT
,”
Virtual Phys. Prototyp.
,
10
(
4
), pp.
195
206
.
21.
Meola
,
C.
, and
Toscano
,
C.
,
2014
, “
Flash Thermography to Evaluate Porosity in Carbon Fiber Reinforced Polymer (CFRPs)
,”
Materials (Basel)
,
7
(
3
), pp.
1483
1501
.
22.
Birnbaum
,
A.
,
Aggarangsi
,
P.
, and
Beuth
,
J.
,
2003
, “
Process Scaling and Transient Melt Pool Size Control in Laser-Based Additive Manufacturing Processes
,”
Proceedings of the 2003 International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 4–6
, pp.
328
339
.
23.
Fotovvati
,
B.
,
Wayne
,
S. F.
,
Lewis
,
G.
, and
Asadi
,
E.
,
2018
, “
A Review on Melt-Pool Characteristics in Laser Welding of Metals
,”
Adv. Mater. Sci. Eng.
,
2018
, pp.
1
18
.
24.
Chande
,
T.
, and
Mazumder
,
J.
,
1984
, “
Estimating Effects of Processing Conditions and Variable Properties Upon Pool Shape, Cooling Rates, and Absorption Coefficient in Laser Welding
,”
J. Appl. Phys.
,
56
(
7
), pp.
1981
1986
.
25.
Qi
,
H.
,
Mazumder
,
J.
, and
Ki
,
H.
,
2006
, “
Numerical Simulation of Heat Transfer and Fluid Flow in Coaxial Laser Cladding Process for Direct Metal Deposition
,”
J. Appl. Phys.
,
100
(
2
), p.
024903
.
26.
Kim
,
J. D.
, and
Peng
,
Y.
,
2000
, “
Melt Pool Shape and Dilution of Laser Cladding with Wire Feeding
,”
J. Mater. Process. Technol.
,
104
(
3
), pp.
284
293
.
27.
Pinkerton
,
A. J.
, and
Li
,
L.
,
2004
, “
Modelling the Geometry of a Moving Laser Melt Pool and Deposition Track via Energy and Mass Balances
,”
J. Phys. D. Appl. Phys.
,
37
(
14
), pp.
1885
1895
.
28.
Li
,
S.
,
Xiao
,
H.
,
Liu
,
K.
,
Xiao
,
W.
,
Li
,
Y.
,
Han
,
X.
,
Mazumder
,
J.
, and
Song
,
L.
,
2017
, “
Melt-Pool Motion, Temperature Variation and Dendritic Morphology of Inconel 718 During Pulsed- and Continuous-Wave Laser Additive Manufacturing: A Comparative Study
,”
Mater. Des.
,
119
, pp.
351
360
.
29.
Moat
,
R. J.
,
Pinkerton
,
A. J.
,
Li
,
L.
,
Withers
,
P. J.
, and
Preuss
,
M.
,
2009
, “
Crystallographic Texture and Microstructure of Pulsed Diode Laser-Deposited Waspaloy
,”
Acta Mater.
,
57
(
4
), pp.
1220
1229
.
30.
Tian
,
Q.
,
Guo
,
S.
,
Melder
,
E.
,
Bian
,
L.
, and
Guo
,
W.
,
2021
, “
Deep Learning-Based Data Fusion Method for in Situ Porosity Detection in Laser-Based Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
143
(
4
), pp.
1
14
.
31.
Thrun
,
S.
, and
Pratt
,
L.
,
1998
, “Learning to Learn: Introduction and Overview,”
Learning to Learn
,
Springer US
,
Boston, MA
,
3
17
.
32.
Thrun
,
S.
,
1997
, “
Multitask Learning *
,”
75
, pp.
41
75
.
33.
Shen
,
F.
,
Chen
,
C.
,
Yan
,
R.
, and
Gao
,
R. X.
,
2016
, “
Bearing Fault Diagnosis Based on SVD Feature Extraction and Transfer Learning Classification
,”
Proceedings of the 2015 Prognostics and System Health Management Conference (PHM)
,
Beijing, China
,
Oct. 21–23
, pp.
1
6
.
34.
Zhang
,
Y.
,
Hu
,
X.
, and
Fang
,
Y.
,
2010
, “
Logistic Regression for Transductive Transfer Learning From Multiple Sources
,”
Proceedings of the Lecture Notes on Computer Science (Including Subser. Lecture Notes on Artificial Intelligence Lecture Notes on Bioinformatics), 6441 LNAI(PART 2)
,
Chongqing, China
,
Nov. 19–21
, pp.
175
182
.
35.
Gopalakrishnan
,
K.
,
Khaitan
,
S. K.
,
Choudhary
,
A.
, and
Agrawal
,
A.
,
2017
, “
Deep Convolutional Neural Networks With Transfer Learning for Computer Vision-Based Data-Driven Pavement Distress Detection
,”
Constr. Build. Mater.
,
157
, pp.
322
330
.
36.
Krizhevsky
,
A.
,
Sutskever
,
I.
, and
Hinton
,
G. E.
,
2017
, “
ImageNet Classification with Deep Convolutional Neural Networks
,”
Commun. ACM
,
60
(
6
), pp.
84
90
.
37.
Szegedy
,
C.
,
Liu
,
W.
,
Jia
,
Y.
,
Sermanet
,
P.
,
Reed
,
S.
,
Anguelov
,
D.
,
Erhan
,
D.
,
Vanhoucke
,
V.
, and
Rabinovich
,
A.
,
2015
, “
Going Deeper With Convolutions
,”
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
,
Boston, MA
,
June 7–12
, pp.
1
9
.
38.
Agrawal
,
P.
,
Carreira
,
J.
, and
Malik
,
J.
,
2015
, “
Learning to See by Moving
,”
Proceedings of the IEEE International Conference on Computer Vision
,
Washington, DC
,
Dec. 7– 13
, pp.
37
45
.
39.
Christodoulidis
,
S.
,
Anthimopoulos
,
M.
,
Ebner
,
L.
,
Christe
,
A.
, and
Mougiakakou
,
S.
,
2017
, “
Multisource Transfer Learning With Convolutional Neural Networks for Lung Pattern Analysis
,”
IEEE J. Biomed. Health Inform.
,
21
(
1
), pp.
76
84
.
40.
Guo
,
L.
,
Lei
,
Y.
,
Xing
,
S.
,
Yan
,
T.
, and
Li
,
N.
,
2019
, “
Deep Convolutional Transfer Learning Network: A New Method for Intelligent Fault Diagnosis of Machines With Unlabeled Data
,”
IEEE Trans. Ind. Electron.
,
66
(
9
), pp.
7316
7325
.
41.
Littwin
,
E.
, and
Wolf
,
L.
,
2016
, “
The Multiverse Loss for Robust Transfer Learning
,”
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
,
Las Vegas, NV
,
June 27–30
, pp.
3957
3966
.
42.
Zheng
,
L.
,
Zhao
,
Y.
,
Wang
,
S.
,
Wang
,
J.
, and
Tian
,
Q.
,
2016
, “
Good Practice in CNN Feature Transfer
,” pp. 1–9, [Online], http://arxiv.org/abs/1604.00133
43.
He
,
K.
,
Zhang
,
X.
,
Ren
,
S.
, and
Sun
,
J.
,
2016
, “
Deep Residual Learning for Image Recognition
,”
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
,
Las Vegas, NV
,
June 27–30
, pp.
770
778
.
44.
Simonyan
,
K.
, and
Zisserman
,
A.
,
2015
, “
Very Deep Convolutional Networks for Large-Scale Image Recognition
,”
3rd International Conference on Learning Representations, ICLR 2015—Conference Track Proceedings
,
San Diego, CA
,
May 7–9
.
45.
He
,
K.
,
Zhang
,
X.
,
Ren
,
S.
, and
Sun
,
J.
,
2015
, “
Delving Deep Into Rectifiers: Surpassing Human-Level Performance on Imagenet Classification
,”
Proceedings of the IEEE International Conference on Computer Vision
,
Santiago, Chile
,
Dec. 7–13
, pp.
1026
1034
.
46.
Alzubaidi
,
L.
,
Zhang
,
J.
,
Humaidi
,
A. J.
,
Al-Dujaili
,
A.
,
Duan
,
Y.
,
Al-Shamma
,
O.
,
Santamaría
,
J.
,
Fadhel
,
M. A.
,
Al-Amidie
,
M.
, and
Farhan
,
L.
,
2021
, “
Review of Deep Learning: Concepts, CNN Architectures, Challenges, Applications, Future Directions
,”
J. Big Data
,
8
(
1
), pp.
1
74
.
47.
Ho
,
S.
,
Zhang
,
W.
,
Young
,
W.
,
Buchholz
,
M.
,
Jufout
,
S. A.
,
Dajani
,
K.
,
Bian
,
L.
, and
Mozumdar
,
M.
,
2021
, “
DLAM: Deep Learning Based Real-Time Porosity Prediction for Additive Manufacturing Using Thermal Images of the Melt Pool
,”
IEEE Access
,
9
, pp.
115100
115114
.
48.
Pandiyan
,
V.
,
Drissi-Daoudi
,
R.
,
Shevchik
,
S.
,
Masinelli
,
G.
,
Le-Quang
,
T.
,
Logé
,
R.
, and
Wasmer
,
K.
,
2022
, “
Deep Transfer Learning of Additive Manufacturing Mechanisms Across Materials in Metal-Based Laser Powder Bed Fusion Process
,”
J. Mater. Process. Technol.
,
303
, p.
117531
.
49.
Jollife
,
I. T.
, and
Cadima
,
J.
,
2016
, “
Principal Component Analysis: A Review and Recent Developments
,”
Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
,
374
(
2065
), p.
20150202
.
50.
Murtagh
,
F.
, and
Legendre
,
P.
,
2014
, “
Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion?
,”
J. Classif.
,
31
(
3
), pp.
274
295
.
51.
Ho
,
Y.
, and
Wookey
,
S.
,
2020
, “
The Real-World-Weight Cross-Entropy Loss Function: Modeling the Costs of Mislabeling
,”
IEEE Access
,
8
, pp.
4806
4813
.
52.
Ruder
,
S.
,
2017
, “
An Overview of Multi-Task Learning in Deep Neural Networks
,” (May). [Online], http://arxiv.org/abs/1706.05098
You do not currently have access to this content.