Abstract

Radial forging of metallic materials requires both high temperatures and large plastic deformation. During this process, non-metallic inclusions (NMIs) can debond from the metallic matrix and break apart, resulting in a linear array of smaller inclusions, known as stringers. The evolution of NMIs into stringers can result in matrix load shedding, localized plasticity, and stress concentrations near the matrix–NMI interface. Due to these factors, stringers can be detrimental to the fatigue life of the final forged component, especially when present near a free surface. By performing a finite element model of the forging process with cohesive zones to simulate material debonding, we contribute to the understanding of processing-induced deformation and damage sequences on the onset of stringer formation for both Type 1 and Type 2 alumina NMIs in a Ni–200 matrix. Through a parametric study, the interactions of forging temperature, strain rate, strain per pass, and interfacial decohesion on the NMI damage evolution metrics are studied, specifically NMI particle separation, rotation, and cavity formation. For Type 2 alumina NMIs, embedded in a Ni–200 matrix, the simulations indicate that at temperatures below 800 °C, particle separation dominates the NMI damage sequences, whereas at temperatures between 900 °C and 1000 °C, below an interfacial bond strength of 178 MPa, cavity formation is the dominate damage evolution mechanism, resulting in matrix load shedding and stress concentrations around the NMI.

References

1.
Cong
,
D. Y.
,
Wang
,
Y. D.
,
Lin Peng
,
R.
,
Zetterström
,
P.
,
Zhao
,
X.
,
Liaw
,
P. K.
, and
Zuo
,
L.
,
2006
, “
Crystal Structures and Textures in the Hot-Forged Ni-Mn-Ga Shape Memory Alloys
,”
Metall. Mater. Trans. A
,
37
(
5
), pp.
1397
1403
.
2.
Pollock
,
T. M.
,
2016
, “
Alloy Design for Aircraft Engines
,”
Nat. Mater.
,
15
(
8
), pp.
809
815
.
3.
Furrer
,
D.
, and
Fecht
,
H.
,
1999
, “
Ni-Based Superalloys for Turbine Discs
,”
JOM
,
51
(
1
), pp.
14
17
.
4.
Chen
,
J.
,
Chandrashekhara
,
K.
,
Mahimkar
,
C.
,
Lekakh
,
S. N.
, and
Richards
,
V. L.
,
2012
, “
Study of Void Closure in Hot Radial Forging Process Using 3D Nonlinear Finite Element Analysis
,”
Int. J. Adv. Manuf. Technol.
,
62
(
9–12
), pp.
1001
1011
.
5.
Groover
,
M. P.
,
2019
,
Fundamentals of Modern Manufacturing: Materials, Processes, and Systems
, 7th ed.,
John Wiley & Sons
,
Hoboken, NJ
.
6.
Yeratapally
,
S. R.
,
Hochhalter
,
J. D.
,
Ruggles
,
T. J.
, and
Sangid
,
M. D.
,
2017
, “
Investigation of Fatigue Crack Incubation and Growth in Cast MAR-M247 Subjected to Low Cycle Fatigue at Room Temperature
,”
Int. J. Fract.
,
208
(
1–2
), pp.
79
96
.
7.
Kafka
,
O. L.
,
Yu
,
C.
,
Shakoor
,
M.
,
Liu
,
Z.
,
Wagner
,
G. J.
, and
Liu
,
W. K.
,
2018
, “
Data-Driven Mechanistic Modeling of Influence of Microstructure on High-Cycle Fatigue Life of Nickel Titanium
,”
JOM
,
70
(
7
), pp.
1154
1158
.
8.
Pessard
,
E.
,
Morel
,
F.
,
Morel
,
A.
, and
Bellett
,
D.
,
2011
, “
Modelling the Role of Non-Metallic Inclusions on the Anisotropic Fatigue Behaviour of Forged Steel
,”
Int. J. Fatigue
,
33
(
4
), pp.
568
577
.
9.
Moore
,
J. A.
,
Frankel
,
D.
,
Prasannavenkatesan
,
R.
,
Domel
,
A. G.
,
Olson
,
G. B.
, and
Liu
,
W. K.
,
2016
, “
A Crystal Plasticity-Based Study of the Relationship Between Microstructure and Ultra-High-Cycle Fatigue Life in Nickel Titanium Alloys
,”
Int. J. Fatigue
,
91
, pp.
183
194
.
10.
Courbon
,
J.
,
Lormand
,
G.
,
Dudragne
,
G.
,
Daguier
,
P.
, and
Vincent
,
A.
,
2003
, “
Influence of Inclusion Pairs, Clusters and Stringers on the Lower Bound of the Endurance Limit of Bearing Steels
,”
Tribol. Int.
,
36
(
12
), pp.
921
928
.
11.
Bandyopadhyay
,
R.
, and
Sangid
,
M. D.
,
2019
, “
Crystal Plasticity Assessment of Inclusion- and Matrix-Driven Competing Failure Modes in a Nickel-Base Superalloy
,”
Acta Mater.
,
177
, pp.
20
34
.
12.
Naragani
,
D.
,
Sangid
,
M. D.
,
Shade
,
P. A.
,
Schuren
,
J. C.
,
Sharma
,
H.
,
Park
,
J. S.
,
Kenesei
,
P.
,
Bernier
,
J. V.
,
Turner
,
T. J.
, and
Parr
,
I.
,
2017
, “
Investigation of Fatigue Crack Initiation From a Non-Metallic Inclusion via High Energy x-Ray Diffraction Microscopy
,”
Acta Mater.
,
137
, pp.
71
84
.
13.
Ren
,
Y.
,
Wang
,
Y.
,
Li
,
S.
,
Zhang
,
L.
,
Zuo
,
X.
,
Lekakh
,
S. N.
, and
Peaslee
,
K.
,
2014
, “
Detection of Non-Metallic Inclusions in Steel Continuous Casting Billets
,”
Metall. Mater. Trans. B Process Metall. Mater. Process. Sci.
,
45
(
4
), pp.
1291
1303
.
14.
Chang
,
D. R.
,
Krueger
,
D. D.
, and
Sprague
,
R. A.
,
1984
, “
Superalloy Powder Processing, Properties and Turbine Disk Applications
,”
Superalloys 1984, Fifth International Symposium
, pp.
245
273
.
15.
Qi
,
R. S.
,
Jin
,
M.
,
Liu
,
X. G.
, and
Guo
,
B. F.
,
2016
, “
Formation Mechanism of Inclusion Defects in Large Forged Pieces
,”
J. Iron Steel Res. Int.
,
23
(
6
), pp.
531
538
.
16.
Stinville
,
J. C.
,
Martin
,
E.
,
Karadge
,
M.
,
Ismonov
,
S.
,
Soare
,
M.
,
Hanlon
,
T.
,
Sundaram
,
S.
, et al
,
2018
, “
Competing Modes for Crack Initiation From Non-Metallic Inclusions and Intrinsic Microstructural Features During Fatigue in a Polycrystalline Nickel-Based Superalloy
,”
Metall. Mater. Trans. A Phys. Metall. Mater. Sci.
,
49
(
9
), pp.
3865
3873
.
17.
Makino
,
T.
,
2008
, “
The Effect of Inclusion Geometry According to Forging Ratio and Metal Flow Direction on Very High-Cycle Fatigue Properties of Steel Bars
,”
Int. J. Fatigue
,
30
(
8
), pp.
1409
1418
.
18.
Wang
,
X.
,
Zhou
,
X.
,
Yang
,
J.
,
Zou
,
J.
, and
Wang
,
W.
,
2013
, “
Detection and Deformation Mechanism of Non-Metallic Inclusions in FGH96 Alloy Isothermal Forging Disk
,”
Mater. Sci. Forum
,
747–748
, pp.
526
534
.
19.
Texier
,
D.
,
Stinville
,
J. C.
,
Echlin
,
M. P.
,
Pierret
,
S.
,
Villechaise
,
P.
,
Pollock
,
T. M.
, and
Cormier
,
J.
,
2019
, “
Short Crack Propagation From Cracked Non-Metallic Inclusions in a Ni-Based Polycrystalline Superalloy
,”
Acta Mater.
,
165
, pp.
241
258
.
20.
Kramer
,
G. M.
,
2009
, “
A Comparison of Chemistry and Inclusion Distribution and Morphology Versus Melting Method of NiTi Alloys
,”
J. Mater. Eng. Perform.
,
18
(
5–6
), pp.
479
483
.
21.
Wu
,
M.
,
Zhao
,
F.
,
Yang
,
Y.
,
Jiang
,
B.
,
Zhang
,
C. L.
, and
Liu
,
Y. Z.
,
2018
, “
The Effect of Size and Distribution of MnS Inclusions on the Austenite Grain Growth in a Low Cost Hot Forged Steel
,”
Steel Res. Int.
,
89
(
2
), p.
1700270
.
22.
Dupont
,
T. D.
,
2005
, “
Modeling Surface-Bonded Structures with ABAQUS Cohesive Elements: Beam-Type Solutions
,”
ABAQUS Users’ Conference
, pp.
1
27
.
23.
Tanaka
,
K.
,
Mori
,
T.
, and
Nakamura
,
T.
,
1970
, “
Cavity Formation at the Interface of a Spherical Inclusion in a Plastically Deformed Matrix
,”
Philos. Mag. A J. Theor. Exp. Appl. Phys.
,
21
(
170
), pp.
267
279
.
24.
Argon
,
A. S.
,
Im
,
J.
, and
Safoglu
,
R.
,
1975
, “
Cavity Formation From Inclusions in Ductile Fracture
,”
Metall. Trans. A
,
6
(
4
), pp.
825
837
.
25.
Needleman
,
A.
,
1987
, “
A Continuum Model for Void Nucleation by Inclusion Debonding
,”
ASME J. Appl. Mech.
,
54
(
3
), pp.
525
531
.
26.
Riedel
,
U. T.
,
Bleck
,
W.
,
Morgan
,
J. E.
,
Guild
,
F. J.
, and
McMahon
,
C. A.
,
1999
, “
Finite Element Modelling of the Effect of Non-Metallic Inclusions in Metal Forming Processes
,”
Comput. Mater. Sci.
,
16
(
1–4
), pp.
32
38
.
27.
Luo
,
C.
,
2001
,
Modeling the Behavior of Inclusions in Plastic Deformation of Steels
,
Royal Institue of Technology
.
28.
Segurado
,
J.
, and
Llorca
,
J.
,
2005
, “
A Computational Micromechanics Study of the Effect of Interface Decohesion on the Mechanical Behavior of Composites
,”
Acta Mater.
,
53
(
18
), pp.
4931
4942
.
29.
Vaughan
,
T. J.
, and
McCarthy
,
C. T.
,
2011
, “
Micromechanical Modelling of the Transverse Damage Behaviour in Fibre Reinforced Composites
,”
Compos. Sci. Technol.
,
71
(
3
), pp.
388
396
.
30.
González
,
C.
, and
Llorca
,
J.
,
2007
, “
Mechanical Behavior of Unidirectional Fiber-Reinforced Polymers Under Transverse Compression: Microscopic Mechanisms and Modeling
,”
Compos. Sci. Technol.
,
67
(
13
), pp.
2795
2806
.
31.
Yu
,
X.
,
Zhang
,
B.
, and
Gu
,
B.
,
2020
, “
Interfacial Fatigue Damage Behavior of Fiber Reinforced Rubber—A Combined Experimental and Cohesive Zone Model Approach
,”
Polym. Eng. Sci.
,
60
(
6
), pp.
1316
1323
.
32.
Bergsmo
,
A.
, and
Dunne
,
F. P. E.
,
2020
, “
Competing Mechanisms of Particle Fracture, Decohesion and Slip-Driven Fatigue Crack Nucleation in a PM Nickel Superalloy
,”
Int. J. Fatigue
,
135
, p.
105573
.
33.
Zeleniakienė
,
D.
,
Griškevičius
,
P.
, and
Leišis
,
V.
,
2005
, “
The Comparative Analysis of 2D and 3D Microstructural Models Stresses of Porous Polymer Materials | Mechanics
,”
Mechanics
,
53
(
3
), pp.
22
26
.
34.
Hathaway
,
B.
,
2006
,
Special Metals: Nickel 200 & 201, SMC-061
,
Special Metals
,
New Hartford, WV
.
35.
Auerkari
,
P.
,
1996
,
Mechanical and Physical Properties of Engineering Alumina Ceramics
,
Technical Research Centre of Finland, VTT Tiedotteita
,
Meddelanden
.
36.
Wang
,
Y.
,
2010
, “
A First-Principles Approach to Finite Temperature Elastic Constants
,”
J. Phys. Condens. Matter
,
22
(
22
), p.
225404
.
37.
Sczerzenie
,
F.
,
Vergani
,
G.
, and
Belden
,
C.
,
2012
, “
The Measurement of Total Inclusion Content in Nickel-Titanium Alloys
,”
J. Mater. Eng. Perform.
,
21
(
12
), pp.
2578
2586
.
38.
Rajendran
,
A. M.
,
Grove
,
D. J.
,
Dietenberger
,
M. A.
, and
Cook
,
W. H.
,
1991
, A Dynamic Failure Model for Ductile Materials, Air Force Armament Laboratory Report, AFATL-TR-90-84.
39.
Barenblatt
,
G. I.
,
1962
, “
The Mathematical Theory of Equilibrium Cracks in Brittle Fracture
,”
Adv. Appl. Mech.
,
7
(
C
), pp.
55
129
.
40.
Dugdale
,
D. S.
,
1960
, “
Yielding of Steel Sheets Containing Slits
,”
J. Mech. Phys. Solids
,
8
(
2
), pp.
100
104
.
41.
2022
, “
Abaqus 6.14 Analysis User’s Manual
,”
Dassault Systèmes Simulia, I
130.149.89.49:2080/v6.14/.
42.
Benzeggagh
,
M. L.
, and
Kenane
,
M.
,
1996
, “
Measurement of Mixed-Mode Delamination Fracture Toughness of Unidirectional Glass/Epoxy Composites With Mixed-Mode Bending Apparatus
,”
Compos. Sci. Technol.
,
56
(
4
), pp.
439
449
.
43.
Petersson
,
P. E.
,
1981
, Crack Growth and Development of Fracture Zones in Plain Concrete and Similar Materials,” Report No. TVBM-1006, Lund Institute of Technology, Sweden.
44.
Raghavan
,
S.
,
Schmadlak
,
I.
,
Leal
,
G.
, and
Sitaraman
,
S. K.
,
2014
, “
Framework to Extract Cohesive Zone Parameters Using Double Cantilever Beam and Four-Point Bend Fracture Tests
,”
Proceedings of the 2014 15th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, EuroSimE
,
Ghent, Belgium
.
45.
Gavalda-Diaz
,
O.
,
Manno
,
R.
,
Melro
,
A.
,
Allegri
,
G.
,
Hallett
,
S. R.
,
Vandeperre
,
L.
,
Saiz
,
E.
, and
Giuliani
,
F.
,
2021
, “
Mode I and Mode II Interfacial Fracture Energy of SiC/BN/SiC CMCs
,”
Acta Mater.
,
215
, p.
117125
.
46.
Wu
,
C.
,
Huang
,
R.
, and
Liechti
,
K. M.
,
2017
, “
Characterizing Interfacial Sliding of Through-Silicon-via by Nano-Indentation
,”
IEEE Trans. Device Mater. Reliab.
,
17
(
2
), pp.
355
363
.
47.
Park
,
N. K.
,
Kim
,
I. S.
,
Na
,
Y. S.
, and
Yeom
,
J. T.
,
2001
, “
Hot Forging of a Ni-Base Superalloy
,”
J. Mater. Process. Technol.
,
111
(
1–3
), pp.
98
102
.
48.
Sliney
,
H. E.
, and
DellaCorte
,
C.
,
1993
, “
The Friction and Wear of Ceramic/ Ceramic and Ceramic/Metal Combinations in Sliding Contact
,”
Proceedings of the STLE-ASME Tribology Conference No. NAS 1. 15: 106348.
49.
Djavanroodi
,
F.
,
Hussain
,
Z.
,
Irfan
,
O.
, and
Al-Mufadi
,
F.
,
2019
, “
Strain Behavior of Nickel Alloy 200 During Multiaxial Forging Through Finite Element Modeling
,”
Metals (Basel)
,
9
(
2
), p.
132
.
50.
Li
,
D.
, and
Wong
,
L. N. Y.
,
2013
, “
The Brazilian Disc Test for Rock Mechanics Applications: Review and New Insights
,”
Rock Mech. Rock Eng.
,
46
(
2
), pp.
269
287
.
51.
Gao
,
Y. F.
, and
Bower
,
A. F.
,
2004
, “
A Simple Technique for Avoiding Convergence Problems in Finite Element Simulations of Crack Nucleation and Growth on Cohesive Interfaces
,”
Model. Simul. Mater. Sci. Eng.
,
12
(
3
), pp.
453
463
.
You do not currently have access to this content.