Abstract

Diamond has attracted extensive attention from many scholars due to its characteristics, whereas the high-efficiency and ultra-low damage machining regarding diamond is still a bottleneck restricting its applications. Herein, a new polishing equipment was built, and a new method of photochemical mechanical polishing (PCMP) combining mechanical + chemical + optical field coupling was proposed to solve the problem of high-efficiency and ultra-low damage machining of diamond. The experimental results show that the sub-nanoscale surface of Ra 0.071 nm, rms 0.090 nm, Rz 0.943 nm, and the micro removal rate per hour can be obtained after PCMP for the first time. Transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS) results manifest that the damage of the diamond substrate after PCMP is amorphous carbon damage, and the damage thickness of amorphous carbon is only 0.6 nm. The PCMP model of ReaxFF molecular dynamics (MD) simulation was constructed to elucidate the microscopic mechanism during the diamond PCMP process. Simulation results show that ultraviolet (UV) irradiation increases the activity of diamond by decreasing the stability of substrate and weakening the C-C bonds, thus promoting the oxidation of diamond surface. Our experimental and theoretical research provides an insight for realizing high-efficiency and ultra-low damage machining of diamond.

References

1.
Berman
,
L. E
,
Hastings
,
J. B.
,
Siddons
,
D. P.
,
Koike
,
M.
,
Stojanoff
,
V.
, and
Hart
,
M.
,
1993
, “
Diamond Crystal X-Ray Optics for High-Power-Density Synchrotron Radiation Beams
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
,
329
(
3
), pp.
555
563
.
2.
Thumm
,
M. K.
,
2009
, “
Progress on Gyrotrons for ITER and Future Fusion Reactors
,”
Radio Frequency Power in Plasmas: Proceedings of the 18th Topical Conference
,
Ghent, Belgium
,
June 24–26
.
3.
Malshe
,
A. P.
,
Park
,
B. S.
,
Brown
,
W. D.
, and
Naseem
,
H. A.
,
1999
, “
A Review of Techniques for Polishing and Planarizing Chemically Vapor-Deposited (CVD) Diamond Films and Substrates
,”
Diamond Relat. Mater.
,
8
(
7
), pp.
1198
1213
.
4.
Hitchiner
,
M. P.
,
Wilks
,
E. M.
, and
Wilks
,
J.
,
1984
, “
The Polishing of Diamond and Diamond Composite Materials
,”
Wear
,
94
(
1
), pp.
103
120
.
5.
Weima
,
J. A.
,
Zaitsev
,
A. M.
,
Job
,
R.
,
Kosaca
,
G.
,
Blum
,
F.
,
Grabosch
,
G.
,
Fahrner
,
W. R.
, and
Knopp
,
J.
,
2000
, “
Investigation of Non-Diamond Carbon Phases and Optical Centers in Thermochemically Polished Polycrystalline CVD Diamond Films
,”
J. Solid State Electrochem.
,
4
(
8
), pp.
425
434
.
6.
Zong
,
W.
,
Zhang
,
J.
,
Liu
,
Y.
, and
Sun
,
T.
,
2014
, “
Achieving Ultra-Hard Surface of Mechanically Polished Diamond Crystal by Thermo-Chemical Refinement
,”
Appl. Surf. Sci.
,
316
, pp.
617
624
.
7.
Cui
,
Z.
,
Li
,
G.
, and
Zong
,
W.
,
2019
, “
A Polishing Method for Single Crystal Diamond (100) Plane Based on Nano Silica and Nano Nickel Powder
,”
Diamond Relat. Mater.
,
95
, pp.
141
153
.
8.
Xu
,
H.
,
Zang
,
J.
,
Yang
,
G.
,
Jia
,
S.
,
Tian
,
P.
,
Zhang
,
Y.
,
Wang
,
Y.
, et al
,
2017
, “
High-Efficiency Grinding CVD Diamond Films by Fe-Ce Containing Corundum Grinding Wheels
,”
Diamond Relat. Mater.
,
80
, pp.
5
13
.
9.
Hirata
,
A.
,
Tokura
,
H.
, and
Yoshikawa
,
M.
,
1992
, “
Smoothing of Chemically Vapour Deposited Diamond Films by Ion Beam Irradiation
,”
Thin Solid Films.
,
212
(
1
), pp.
43
48
.
10.
Yoshida
,
A.
,
Deguchi
,
M.
,
Kitabatake
,
M.
,
Hirao
,
T.
,
Matsuo
,
J.
,
Toyoda
,
N.
, and
Yamada
,
I.
,
1996
, “
Atomic Level Smoothing of CVD Diamond Films by Gas Cluster Ion Beam Etching
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
,
112
(
1–4
), pp.
248
251
.
11.
Zhao
,
T.
,
Grogan
,
D. F.
,
Bovard
,
B. G.
, and
Macleod
,
H. A.
,
1990
, “
Diamond Film Polishing With Argon and Oxygen Ion Beams
,”
34th Annual International Technical Symposium on Optical and Optoelectronic Applied Science and Engineering
,
San Diego, CA
,
Dec. 1
.
12.
Gloor
,
S.
,
Lüthy
,
W.
,
Weber
,
H. P.
,
Pimenov
,
S. M.
,
Ralchenko
,
V. G.
,
Konov
,
V. I.
, and
Khomich
,
A.V.
,
1999
, “
UV Laser Polishing of Thick Diamond Films for IR Windows
,”
Appl. Surf. Sci.
,
138–139
(
1
), pp.
135
139
.
13.
Malshe
,
A. P.
,
Ozkan
,
A. M.
, and
Brown
,
W. D.
,
2001
,
Process for Sequential Multi Beam Laser Processing of Materials: US, US6168744 B1[P]
.
14.
Singh
,
R. K.
, and
Lee
,
D. G.
,
1996
, “
Excimer Laser-Assisted Planarization of Thick Diamond Films
,”
J. Electron. Mater.
,
25
(
1
), pp.
137
142
.
15.
Gupta
,
B. K.
,
Malshe
,
A.
,
Bhushan
,
B.
, and
Subramaniam
,
V. V.
,
1994
, “
Friction and Wear Properties of Chemomechanically Polished Diamond Films
,”
ASME J. Tribol.
,
116
(
3
), pp.
445
453
.
16.
Kühnle
,
J.
, and
Weis
,
O.
,
1995
, “
Mechanochemical Superpolishing of Diamond Using NaNO3 or KNO3 as Oxidizing Agents
,”
Surf. Sci.
,
340
(
1
), pp.
16
22
.
17.
Cheng
,
C. Y.
,
Tsai
,
H. Y.
,
Wu
,
C. H.
,
Liu
,
P. Y.
,
Hsieh
,
C. H.
, and
Chang
,
Y. Y.
,
2005
, “
An Oxidation Enhanced Mechanical Polishing Technique for CVD Diamond Films
,”
Diamond Relat. Mater.
,
14
(
3–7
), pp.
622
625
.
18.
Kubota
,
A.
,
Nagae
,
S.
, and
Touge
,
M.
,
2016
, “
Improvement of Material Removal Rate of Single-Crystal Diamond by Polishing Using H2O2 Solution
,”
Diamond Relat. Mater.
,
70
, pp.
39
45
.
19.
Kubota
,
A.
,
Nagae
,
S.
,
Motoyama
,
S.
, and
Touge
,
M.
,
2015
, “
Two-step Polishing Technique for Single Crystal Diamond (100) Substrate Utilizing a Chemical Reaction With Iron Plate
,”
Diamond Relat. Mater.
,
60
, pp.
75
80
.
20.
Kubota
,
A.
,
Nagae
,
S.
, and
Motoyama
,
S.
,
2020
, “
High-Precision Mechanical Polishing Method for Diamond Substrate Using Micron-Sized Diamond Abrasive Grains
,”
Diamond Relat. Mater.
,
101
, p.
107644
.
21.
Lin
,
Y.
,
Lu
,
J.
,
Tong
,
R.
,
Luo
,
Q.
, and
Xu
,
X.
,
2018
, “
Surface Damage of Single-Crystal Diamond (100) Processed Based on a Sol-Gel Polishing Tool
,”
Diamond Relat. Mater.
,
83
, pp.
46
53
.
22.
Yuan
,
Z.
,
Jin
,
Z.
,
Zhang
,
Y.
, and
Wen
,
Q.
,
2013
, “
Chemical Mechanical Polishing Slurries for Chemically Vapor-Deposited Diamond Films
,”
ASME J. Manuf. Sci. Eng.
,
135
(
4
), p.
041006
.
23.
Yuan
,
Z.
,
Jin
,
Z.
,
Li
,
Q.
, and
Du
,
H.
,
2016
, “
Study on the Chemical Mechanical Polishing Technique of CVD Diamond
,”
J. Synth. Cryst.
,
45
(
1
), pp.
73
79
.
24.
Jin
,
Z. J.
,
Yuan
,
Z. W.
,
Li
,
Q.
, and
Wang
,
K.
,
2011
, “
Tribological Aspects of Chemical Mechanical Polishing Diamond Surfaces
,”
Adv. Mater. Res.
,
325
, pp.
464
469
.
25.
Watanabe
,
J.
,
Touge
,
M.
, and
Sakamoto
,
T.
,
2013
, “
Ultraviolet-Irradiated Precision Polishing of Diamond and Its Related Materials
,”
Diamond Relat. Mater.
,
39
(
10
), pp.
14
19
.
26.
Kubota
,
A.
, and
Takita
,
T.
,
2018
, “
Novel Planarization Method of Single-Crystal Diamond Using 172 nm Vacuum-Ultraviolet Light
,”
Precis. Eng.
,
54
, pp.
269
275
.
27.
Peguiron
,
A.
,
Moras
,
G.
,
Walter
,
M.
,
Uetsuka
,
H.
,
Pastewka
,
L.
, and
Moseler
,
M.
,
2016
, “
Activation and Mechanochemical Breaking of C–C Bonds Initiate Wear of Diamond (110) Surfaces in Contact With Silica
,”
Carbon
,
98
, pp.
474
483
.
28.
Zilibotti
,
G.
, and
Righi
,
M. C.
,
2011
, “
Ab Initio Calculation of the Adhesion and Ideal Shear Strength of Planar Diamond Interfaces With Different Atomic Structure and Hydrogen Coverage
,”
Langmuir
,
27
(
11
), pp.
6862
6867
.
29.
Pastewka
,
L.
,
Moser
,
S.
,
Gumbsch
,
P.
, and
Moseler
,
M.
,
2011
, “
Anisotropic Mechanical Amorphization Drives Wear in Diamond
,”
Nat. Mater.
,
10
(
1
), pp.
34
38
.
30.
Dai
,
H.
,
Zhang
,
F.
, and
Chen
,
J.
,
2019
, “
A Study of Ultraprecision Mechanical Polishing of Single-Crystal Silicon With Laser Nano-Structured Diamond Abrasive by Molecular Dynamics Simulation
,”
Int. J. Mech. Sci.
,
157–158
, pp.
254
266
.
31.
Dai
,
H.
,
Chen
,
G.
,
Zhou
,
C.
,
Fang
,
Q.
, and
Fei
,
X.
,
2017
, “
A Numerical Study of Ultraprecision Machining of Monocrystalline Silicon With Laser Nano-Structured Diamond Tools by Atomistic Simulation
,”
Appl. Surf. Sci.
,
393
, pp.
405
416
.
32.
van Duin
,
A. C. T.
,
Dasgupta
,
S.
,
Lorant
,
F.
, and
Goddard
,
W. A.
,
2001
, “
ReaxFF: A Reactive Force Field for Hydrocarbons
,”
J. Phys. Chem. A
,
105
(
41
), pp.
9396
9409
.
33.
Li
,
X.
,
Wang
,
A.
, and
Lee
,
K.
,
2019
, “
Insights on Low-Friction Mechanism of Amorphous Carbon Films From Reactive Molecular Dynamics Study
,”
Tribol. Int.
,
131
, pp.
567
578
.
34.
Yuan
,
S.
,
Guo
,
X.
,
Li
,
M.
,
Jin
,
Z.
, and
Guo
,
D.
,
2022
, “
An Insight Into Polishing Slurry for High Quality and Efficiency Polishing of Diamond
,”
Tribol. Int.
,
174
, p.
107789
.
35.
Yuan
,
S.
,
Guo
,
X.
,
Huang
,
J.
,
Lu
,
M.
,
Jin
,
Z.
,
Kang
,
R.
, and
Guo
,
D.
,
2019
, “
Sub-Nanoscale Polishing of Single Crystal Diamond(100) and the Chemical Behavior of Nanoparticles During the Polishing Process
,”
Diamond Relat. Mater.
,
100
, p.
107528
.
36.
Yuan
,
S.
,
Guo
,
X.
,
Huang
,
J.
,
Gou
,
Y.
,
Jin
,
Z.
,
Kang
,
R.
, and
Guo
,
D.
,
2020
, “
Insight Into the Mechanism of Low Friction and Wear During the Chemical Mechanical Polishing Process of Diamond: A Reactive Molecular Dynamics Simulation
,”
Tribol. Int.
,
148
, p.
106308
.
37.
Yuan
,
S.
,
Guo
,
X.
,
Mao
,
Q.
,
Guo
,
J.
,
van Duin
,
A. C. T.
,
Jin
,
Z.
,
Kang
,
R.
, and
Guo
,
D.
,
2021
, “
Effects of Pressure and Velocity on the Interface Friction Behavior of Diamond Utilizing ReaxFF Simulations
,”
Int. J. Mech. Sci.
,
191
, p.
106096
.
38.
Assowe
,
O.
,
Politano
,
O.
,
Vignal
,
V.
,
Arnoux
,
P.
,
Diawara
,
B.
,
Verners
,
O.
, and
van Duin
,
A. C. T.
,
2012
, “
Reactive Molecular Dynamics of the Initial Oxidation Stages of Ni(111) in Pure Water: Effect of an Applied Electric Field
,”
J. Phys. Chem. A
,
116
(
48
), pp.
11796
11805
.
39.
Carter
,
S.
, and
Handy
,
N. C.
,
1984
, “
A Variational Method for the Calculation of ro-Vibronic Levels of Any Orbitally Degenerate (Renner-Teller) Triatomic Molecule
,”
Mol. Phys.
,
52
(
6
), pp.
1367
1391
.
40.
Hoover
,
W. G.
,
1985
, “
Canonical Dynamics: Equilibrium Phase-Space Distributions
,”
Phys. Rev. A
,
31
(
3
), pp.
1695
1697
.
41.
van Gunsteren
,
W. F.
, and
Berendsen
,
H. J. C.
,
1977
, “
Algorithms for Macromolecular Dynamics and Constraint Dynamics
,”
Mol. Phys.
,
34
(
5
), pp.
1311
1327
.
42.
Zou
,
C.
, and
Duin
,
A. V.
,
2012
, “
Investigation of Complex Iron Surface Catalytic Chemistry Using the ReaxFF Reactive Force Field Method
,”
JOM
,
64
(
12
), pp.
1426
1437
.
43.
Aktulga
,
H. M.
,
Fogarty
,
J. C.
,
Pandit
,
S. A.
, and
Grama
,
A. Y.
,
2012
, “
Parallel Reactive Molecular Dynamics: Numerical Methods and Algorithmic Techniques
,”
Parallel Comput.
,
38
(
4–5
), pp.
245
259
.
44.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
.
45.
Stukowski
,
A.
,
2010
, “
Visualization and Analysis of Atomistic Simulation Data With OVITO-the Open Visualization Tool
,”
Modell. Simul. Mater. Sci. Eng.
,
18
(
6
), pp.
2154
2162
.
46.
Liao
,
L.
,
Zhang
,
Z.
,
Meng
,
F.
,
Liu
,
D.
,
Wu
,
B.
,
Li
,
Y.
, and
Xie
,
W.
,
2021
, “
A Novel Slurry for Chemical Mechanical Polishing of Single Crystal Diamond
,”
Appl. Surf. Sci.
,
564
, p.
150431
.
You do not currently have access to this content.