Abstract

A high degree of automation, especially through the use of robots, is state of the art in the automotive and electronics industries. Even though the construction sector is currently lagging behind, an increase in automation and the use of robots can be observed. To assess the potential in industrial timber construction with a focus set on subtractive machining, this paper presents the state of the art in terms of the use of industrial robots and joinery machines, compact joinery machines, and gantry-type joinery machines in regard to milling processes. The capabilities of different types of joinery machines are evaluated and compared with vertical articulated industrial robots equipped with machining spindles. An overview of the history and an assessment of various parameters in the categories: Quality, System, Machining and Economy, is given. Publications, manufacturer information, and industry findings are reviewed to answer pressing questions on automation in timber construction. Limitations such as robotic stability or the limited working space of joinery machines and the affordability of robotic systems are elaborated and CAD/CAM (computer-aided design/computer-aided manufacturing) processes are scrutinized. After the evaluation and comparison of four different systems, an approach for future research is proposed. The main findings are a very low degree of robotization and data availability within the timber industry, lower acquisition costs for industrial robots while increasing the flexibility of the workspace, and task-specific advantages of the respective systems, including machining power, potential for improvement in automation (especially CAD/CAM), and machining quality.

References

1.
Davila Delgado
,
J. M.
,
Oyedele
,
L.
,
Ajayi
,
A.
,
Akanbi
,
L.
,
Akinade
,
O.
,
Bilal
,
M.
, and
Owolabi
,
H.
,
2019
, “
Robotics and Automated Systems in Construction: Understanding Industry-Specific Challenges for Adoption
,”
J. Build. Eng.
,
26
.
2.
Schindler
,
C.
,
2009
,
Ein Architektonisches Periodisierungsmodell Anhand Fertigungstechnischer Kriterien, Dargestellt am Beispiel des Holzbaus
,
TU Kaiserslautern
,
Kaiserslautern
.
3.
Pahlitzsch
,
G.
,
1950
, “
Die Holzbearbeitungsmaschinen Im Ingenieurholzbau
,”
VDI-Z.
,
92
(
13
).
4.
Hans Hundegger
,
A. G.
Hans Hundegger AG
”. https://www.hundegger.com/de-de/, Accessed October 19, 2021.
5.
Haun
,
M.
,
2013
,
Handbuch Robotik
,
Springer Berlin Heidelberg
,
Berlin/Heidelberg
.
6.
International Federation of Robotics
,
2021
, “
World Robotics 2021
.”
7.
Pott
,
A.
, and
Dietz
,
T.
,
2019
,
Industrielle Robotersysteme: Entscheiderwissen für die Planung und Umsetzung Wirtschaftlicher Roboterlösungen
,
Springer Fachmedien Wiesbaden
,
Wiesbaden
.
8.
Reichenbach
,
S.
, and
Kromoser
,
B.
,
2021
, “
State of Practice of Automation in Precast Concrete Production
,”
J. Build. Eng.
,
43
.
9.
Ji
,
W.
, and
Wang
,
L.
,
2019
, “
Industrial Robotic Machining: A Review
,”
Int. J. Adv. Manuf. Technol.
,
103
(
1–4
), pp.
1239
1255
.
10.
Çakır
,
M.
,
Hekimoğlu
,
B.
, and
Deniz
,
C.
,
2019
, “
Path Planning for Industrial Robot Milling Applications
,”
Proc. Comput. Sci.
,
158
, pp.
27
36
.
11.
Kuzman
,
M. K.
, and
Sandberg
,
D.
,
2016
, “
A New Era for Multi-Storey Timber Buildings in Europe
,”
Portland, OR
, p.
7
.
12.
Kuzmanovska
,
I.
,
Gasparri
,
E.
,
Monne
,
D. T.
, and
Aitchison
,
M.
,
2018
, “
World Conference on Timber Engineering Seoul - Tall Timber Buildings: Emerging Trends and Typologies
,”
World Conference on Timber Engineering
,
Seoul, South Korea
,
Aug. 20–23
, p.
10
.
13.
Rubner Holzbau GmbH
,
2020
, “
Interview Rubner Holzbau GmbH
.”
14.
Wagner
,
H. J.
,
Alvarez
,
M.
,
Groenewolt
,
A.
, and
Menges
,
A.
,
2020
, “
Towards Digital Automation Flexibility in Large-Scale Timber Construction: Integrative Robotic Prefabrication and Co-Design of the BUGA Wood Pavilion
,”
Constr. Robot.
,
4
(
3–4
), pp.
187
204
.
15.
International Organization of Standardization
,
1989
,
ISO 2768-1:1989 General Tolerances—Part 1: Tolerances for Linear and Angular DimensionsWwithout Individual Tolerance Indications.
16.
International Organization of Standardization
,
2019
,
EN ISO 286-1:2019 Geometrical Product Specifications (GPS)—ISO Code System for Tolerances, Deviations and Fits.
17.
International Organization of Standardization
,
2022
,
ISO 18202:2022-03 Tolerances in Building Construction.
18.
CEN, Austrian Standards
.
EN 336:2013 10—IDT—Structural Timber—Sizes, Permitted Deviations.
19.
Dietrich
,
J.
, and
Richter
,
A.
,
2020
,
Praxis der Zerspantechnik: Verfahren, Prozesse, Werkzeuge
,
Springer Fachmedien Wiesbaden
,
Wiesbaden
.
20.
Curti
,
R.
,
Marcon
,
B.
,
Denaud
,
L.
,
Togni
,
M.
,
Furferi
,
R.
, and
Goli
,
G.
,
2021
, “
Generalized Cutting Force Model for Peripheral Milling of Wood, Based on the Effect of Density, Uncut Chip Cross Section, Grain Orientation and Tool Helix Angle
,”
Eur. J. Wood Wood Prod.
,
79
(
3
), pp.
667
678
.
21.
CEN, Austrian Standards
.
EN 10025-1—Hot Rolled Products of Structural Steels. Part 1: General Technical Delivery Conditions.
22.
Eyma
,
F.
,
Méausoone
,
P.-J.
, and
Martin
,
P.
,
2004
, “
Strains and Cutting Forces Involved in the Solid Wood Rotating Cutting Process
,”
J. Mater. Process. Technol.
,
148
(
2
), pp.
220
225
.
23.
Santana-Sosa
,
A.
, and
Fadai
,
A.
,
2019
, “
IOP Conference Series: Earth and Environmental Science – A Holistic Approach for Industrializing Timber Construction
,”
Sustainable Built Environment D-A-CH Conference 2019
,
Graz, Austria
,
Sept. 11–14
.
24.
Breaz
,
R. E.
,
Bologa
,
O.
, and
Racz
,
S. G.
,
2017
, “
Selecting Between CNC Milling, Robot Milling and DMLS Processes Using a Combined AHP and Fuzzy Approach
,”
Procedia Comput. Sci.
,
122
, pp.
796
803
.
25.
Triantaphyllou
,
E.
,
2000
,
Multi-Criteria Decision Making Methods: A Comparative Study
,
Springer US
,
Boston, MA
.
26.
Karim
,
R.
, and
Karmaker
,
C. L.
,
2016
, “
Machine Selection by AHP and TOPSIS Methods
,”
Am. J. Ind. Eng.
,
4
(
1
), pp.
7–13
. http://pubs.sciepub.com/ajie/4/1/2
27.
Çimren
,
E.
,
Çatay
,
B.
, and
Budak
,
E.
,
2007
, “
Development of a Machine Tool Selection System Using AHP
,”
Int. J. Adv. Manuf. Technol.
,
35
(
3–4
), pp.
363
376
.
28.
Yurdakul
,
M.
,
2004
, “
AHP as a Strategic Decision-Making Tool to Justify Machine Tool Selection
,”
J. Mater. Process. Technol.
,
146
(
3
), pp.
365
376
.
29.
Dağdeviren
,
M.
,
2008
, “
Decision Making in Equipment Selection: An Integrated Approach With AHP and PROMETHEE
,”
J. Intell. Manuf.
,
19
(
4
), pp.
397
406
.
30.
Bast
,
G.
,
2017
,
Robotic Woodcraft
,
die Angewandte, University of Applied Arts Vienna
.
31.
Hans Hundegger Maschinenbau AG
,
2011
, “
Hundegger K2i Booklet
.”
32.
Krüsi AG
,
2021
,
Technical Data Sheet
.
33.
HOMAG/Weinmann AG
,
2019
, “
Homag/Weinmann BEAMTEQ Booklet
.”
34.
Hans Hundegger Maschinenbau AG
,
2015
, “
Hundegger Robot Drive Booklet
.”
35.
Hans Hundegger Maschinenbau AG
,
2015
, “
Hundegger PBA-E Booklet
.”
36.
TechnoWood AG
,
2021
, “
Technowood TW Mill—M Booklet
.”
37.
HSD Mechatronics
,
2021
, “
HSD Catalogue ES950 E-CORE ES951 e-CORE
.”
38.
FISCHER Frässpindeln
,
2018
, “
FISCHER Milling Spindle Program
,” p.
12
.
39.
ABB
,
2019
, “
ABB IRB 7600 Data Sheet
.”
40.
HOMAG
. “
Abbundanlage BEAMTEQ B-660 | HOMAG Group AG
.”
41.
TechnoWood AG
,
2021
, “
Technowood TW Agil Booklet
.”
42.
Bisu
,
C.
,
Cherif
,
M.
,
Gerard
,
A.
, and
K’nevez
,
J. Y.
,
2011
, “
Dynamic Behavior Analysis for a Six Axis Industrial Machining Robot
,”
Adv. Mater. Res.
,
423
, pp.
65
76
. www.scientific.net/AMR.423.65
43.
ABB
,
2016
, “
ABB IRBT 6004 Data Sheet
.”
44.
Thoma
,
A.
,
Adel
,
A.
,
Helmreich
,
M.
,
Wehrle
,
T.
,
Gramazio
,
F.
, and
Kohler
,
M.
,
2018
, “
Robotic Fabrication in Architecture, Art and Design 2018 – Robotic Fabrication of Bespoke Timber Frame Modules
,”
Robotic Fabrication in Architecture, Art and Design (Rob|Arch 2018)
,
Zurich
.
45.
Yuan
,
P. F.
,
Xie
,
Y. M. (.
,
Yao
,
J.
, and
Yan
,
C.
,
2019
, “
DigitalFUTURES: The 1st International Conference on Computational Design and Robotic Fabrication (CDRF 2019)
,”
Proceedings of the 2019 DigitalFUTURES: The 1st International Conference on Computational Design and Robotic Fabrication (CDRF 2019)
,
Springer
.
46.
Wagner
,
H. J.
,
Alvarez
,
M.
,
Kyjanek
,
O.
,
Bhiri
,
Z.
,
Buck
,
M.
, and
Menges
,
A.
,
2020
, “
Flexible and Transportable Robotic Timber Construction Platform—TIM
,”
Autom. Constr.
,
120
.
47.
Helm
,
V.
,
Ercan
,
S.
,
Gramazio
,
F.
, and
Kohler
,
M.
,
2012
, “
Mobile Robotic Fabrication on Construction Sites: DimRob
,”
Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
IEEE, Vilamoura-Algarve, Portugal
,
Oct. 7–12
, pp.
4335
4341
.
48.
Ji
,
W.
,
Yin
,
S.
, and
Wang
,
L.
,
2019
, “
A Big Data Analytics Based Machining Optimisation Approach
,”
J. Intell. Manuf.
,
30
(
3
), pp.
1483
1495
.
49.
Michalos
,
G.
,
Makris
,
S.
,
Papakostas
,
N.
,
Mourtzis
,
D.
, and
Chryssolouris
,
G.
,
2010
, “
Automotive Assembly Technologies Review: Challenges and Outlook for a Flexible and Adaptive Approach
,”
CIRP J. Manuf. Sci. Technol.
,
2
(
2
), pp.
81
91
.
50.
Young
,
K.
, and
Pickin
,
C. G.
,
2000
, “
Accuracy Assessment of the Modern Industrial Robot
,”
Ind. Robot Int. J.
,
27
(
6
), pp.
427
436
.
51.
CEN, Austrian Standards
,
2014
,
EN 1995-1-1/A2:2014 05—IDT—Eurocode 5: Design of Timber Structures—Part 1-1: General—Common Rules and Rules for Buildings (Consolidated Version).
52.
CEN, Austrian Standards
.
EN 14080:2013 06—IDT—Timber Structures—Glued Laminated Timber and Glued Solid Timber—Requirements.
53.
CEN, Austrian Standards
.
EN 16351:2021 07 01—Cross Laminated Timber Requirements.
54.
Pantscharowitsch
,
M.
, and
Kromoser
,
B.
,
2022
, “
Investigation of Industrial Robots vs Joinery Machines for Milling Pockets in Glulam: Comparison Based on Surface Quality and 3D Scans
,”
Civ. Eng. Des.
,
4
(
1–3
), pp.
25
34
.
55.
Pantscharowitsch
,
M.
, and
Kromoser
,
B.
,
2022
, “
Milling Tenons on GLT Beams Using an Industrial Robot and Joinery Machine—Comparison Based on Surface Quality and 3D Scans
,”
Portland, OR
.
56.
KUKA
,
2022
, “
KUKA KR 360 R2830 Data Sheet
.”
57.
Csanády
,
E.
, and
Magoss
,
E.
,
2013
,
Mechanics of Wood Machining
,
Springer Berlin Heidelberg
,
Berlin, Heidelberg
.
58.
Magoss
,
E.
,
2008
, “
General Regularities of Wood Surface Roughness
,”
Acta Silv. Lignaria Hung.
,
4
, pp.
81
93
.
59.
Thoma
,
H.
,
Peri
,
L.
, and
Lato
,
E.
,
2015
, “
Evaluation of Wood Surface Roughness Depending on Species Characteristics
,”
Maderas Cienc. Tecnol.
,
17
(
2
), pp.
285
292
.
60.
Gurau
,
L.
, and
Irle
,
M.
,
2017
, “
Surface Roughness Evaluation Methods for Wood Products: A Review
,”
Curr. For. Rep.
,
3
(
2
), pp.
119
131
.
61.
CEN
,
2012
,
ÖNORM EN ISO 4287:2012 02 01—Geometrical Product Specifications (GPS)—Surface Texture: Profile Method – Terms, Definitions and Surface Texture Parameters.
62.
Pantscharowitsch
,
M.
, and
Kromoser
,
B.
,
2022
, “
Influence of Machining Parameters on Subtractive Manufacturing of Elementary Geometries in Glued Laminated Timber Using an Industrial Robot
,”
Wood Mater. Sci. Eng.
, pp.
25
34
.
63.
CEN
,
1998
,
EN ISO 9283:1998-04: Manipulating Industrial Robots—Performance Criteria and Related Test Methods
,
European Committee for Standardization
,
Brussels
.
64.
Puzik
,
A.
,
2011
, “
Genauigkeitssteigerung Bei Der Spanenden Bearbeitung MitIndustrierobotern Durch Fehlerkompensation Mit 3D-Piezo-Ausgleichsaktorik
,” Ph.D. thesis,
Universität Stuttgart
,
Stuttgart
.
65.
Klimchik
,
A.
,
Ambiehl
,
A.
,
Garnier
,
S.
,
Furet
,
B.
, and
Pashkevich
,
A.
,
2016
, “
Experimental Study of Robotic-Based Machining
,”
IFAC-Pap.
,
49
(
12
), pp.
174
179
.
66.
International Organization for Standardization
.
ISO 12181-1:2011: Geometrical Product Specifications (GPS)—Roundness—Part 1: Vocabulary and Parameters of Roundness.
67.
Pandremenos
,
J.
,
Doukas
,
C.
,
Stavropoulos
,
P.
, and
Chryssolouris
,
G.
,
2011
, “
Machining With Robots: A Critical Review
,”
Athens, Greece
.
68.
Ma
,
L.
,
Bazzoli
,
P.
,
Sammons
,
P. M.
,
Landers
,
R. G.
, and
Bristow
,
D. A.
,
2018
, “
Modeling and Calibration of High-Order Joint-Dependent Kinematic Errors for Industrial Robots
,”
Robot. Comput.-Integr. Manuf.
,
50
, pp.
153
167
.
69.
Gasparetto
,
A.
, and
Zanotto
,
V.
,
2008
, “
A Technique for Time-Jerk Optimal Planning of Robot Trajectories
,”
Robot. Comput.-Integr. Manuf.
,
24
(
3
), pp.
415
426
.
70.
Karim
,
A.
, and
Verl
,
A.
,
2013
, “
Challenges and Obstacles in Robot-Machining
,”
IEEE ISR 2013
,
Seoul, South Korea
,
Oct. 24–26
, IEEE, pp.
1
4
.
71.
Milutinovic
,
D.
,
Glavonjic
,
M.
,
Slavkovic
,
N.
,
Dimic
,
Z.
,
Zivanovic
,
S.
,
Kokotovic
,
B.
, and
Tanovic
,
L.
,
2011
, “
Reconfigurable Robotic Machining System Controlled and Programmed in a Machine Tool Manner
,”
Int. J. Adv. Manuf. Technol.
,
53
(
9–12
), pp.
1217
1229
.
72.
López de Lacalle
,
L. N.
, and
Lamikiz
,
A.
,
2009
,
Machine Tools for High Performance Machining
,
Springer London
,
London
.
73.
Schunk
,
H.
, and
Wolf
,
A.
,
2016
,
Grippers in Motion
,
Carl Hanser Verlag GmbH Co KG
,
Heidelberg, Berlin
.
74.
Coelho
,
R. T.
,
Rodella
,
H. H. T.
,
Martins
,
V. F.
, and
Barba
,
J. R.
,
2011
, “
An Investigation Into the Use of Industrial Robots for Machining Soft and Low Density Materials With HSM Technique
,”
J. Braz. Soc. Mech. Sci. Eng.
,
33
(
3
), pp.
343
350
.
75.
Cordes
,
M.
,
Hintze
,
W.
, and
Altintas
,
Y.
,
2019
, “
Chatter Stability in Robotic Milling
,”
Robot. Comput.-Integr. Manuf.
,
55
, pp.
11
18
.
76.
Scholz
,
F.
,
Ratnasingam
,
J.
,
Mazza
,
M.
, and
Lachenmayr
,
G.
,
2016
, “
Surface Generation and Assessment for Peripheral Milling
,”
Wood Mater. Sci. Eng.
,
11
(
3
), pp.
182
188
.
77.
Matsuoka
,
S.
,
Shimizu
,
K.
,
Yamazaki
,
N.
, and
Oki
,
Y.
,
1999
, “
High-Speed End Milling of an Articulated Robot and its Characteristics
,”
J. Mater. Process. Technol.
,
95
(
1–3
), pp.
83
89
.
78.
Klimchik
,
A.
,
Bondarenko
,
D.
,
Pashkevich
,
A.
,
Briot
,
S.
, and
Furet
,
B.
,
2014
, “Compliance Error Compensation in Robotic-Based Milling,”
Informatics in Control, Automation and Robotics
,
J.-L.
Ferrier
,
A.
Bernard
,
O.
Gusikhin
, and
K.
Madani
, eds.,
Springer International Publishing
,
Cham
, pp.
197
216
.
79.
F
,
K.
, and
Tlusty
,
J.
,
1970
, “
Machine Tool Structure
,” p.
511
.
80.
Hubweber
,
J.
,
2021
,
KUKA
.
81.
Zhang
,
H.
,
Wang
,
J.
,
Zhang
,
G.
,
Gan
,
Z.
,
Pan
,
Z.
,
Cui
,
H.
, and
Zhu
,
Z.
,
2005
, “
Machining With Flexible Manipulator: Toward Improving Robotic Machining Performance
,”
Proceedings of the 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics
,
East Lansing, MI
,
May 24–28
, pp.
1127
1132
.
82.
Chen
,
Y.
, and
Dong
,
F.
,
2013
, “
Robot Machining: Recent Development and Future Research Issues
,”
Int. J. Adv. Manuf. Technol.
,
66
(
9–12
), pp.
1489
1497
.
83.
Pan
,
Z.
,
Zhang
,
H.
,
Zhu
,
Z.
, and
Wang
,
J.
,
2006
, “
Chatter Analysis of Robotic Machining Process
,”
J. Mater. Process. Technol.
,
173
(
3
), pp.
301
309
.
84.
Shen
,
H.
,
Pan
,
L.
, and
Qian
,
J.
,
2019
, “
Research on Large-Scale Additive Manufacturing Based on Multi-Robot Collaboration Technology
,”
Addit. Manuf.
,
30
, p.
100906
.
85.
Mejri
,
S.
,
Gagnol
,
V.
,
Le
,
T.-P.
,
Sabourin
,
L.
,
Ray
,
P.
, and
Paultre
,
P.
,
2016
, “
Dynamic Characterization of Machining Robot and Stability Analysis
,”
Int. J. Adv. Manuf. Technol.
,
82
(
1–4
), pp.
351
359
.
86.
Furtado
,
L. F. F.
,
Villani
,
E.
,
Trabasso
,
L. G.
, and
Sutério
,
R.
,
2017
, “
A Method to Improve the Use of 6-Dof Robots as Machine Tools
,”
Int. J. Adv. Manuf. Technol.
,
92
(
5–8
), pp.
2487
2502
.
87.
Caro
,
S.
,
Dumas
,
C.
,
Garnier
,
S.
, and
Furet
,
B.
,
2013
, “
Workpiece Placement Optimization for Machining Operations With a KUKA KR270-2 Robot
,”
Proceedings of the 2013 IEEE International Conference on Robotics and Automation
,
IEEE, Karlsruhe, Germany
,
May 6–10
, pp.
2921
2926
.
88.
hsbcad
, Empowering You to Realise,
Homepage
.
89.
Chai
,
H.
, and
Yuan
,
P. F.
,
2019
, “Investigations on Potentials of Robotic Band-Saw Cutting in Complex Wood Structures,”
Robotic Fabrication in Architecture, Art and Design 2018
,
J.
Willmann
,
P.
Block
,
M.
Hutter
,
K.
Byrne
, and
T.
Schork
, eds.,
Springer International Publishing
,
Cham
, pp.
256
269
.
90.
ATEMAG AggregateTechnologie Und Manufaktur AG Hofstetten
”. http://www.atemag.de, Accessed July 5, 2022.
91.
Keturakis
,
G.
, and
Juodeikien
,
I.
,
2007
, “
Investigation of Milled Wood Surface Roughness
,”
Mater. Sci.
,
13
(
1
), pp.
47
51
.
92.
Leitz GmbH & Co. KG
,
2021
, “
Milling Tool Datasheets
”.
93.
Sütcü
,
A.
,
Demi
,
S.
, and
Karagöz
,
Ü
,
2012
, “
Effect of Machining Parameters on Surface Milling of MDF
,”
Wood Res.
,
57
(
2
), p.
11
.
94.
Parashar
,
N.
, and
Mittal
,
R. K.
,
2012
,
Elements of Manufacturing Processes
,
Phi Learning
,
New Delhi
.
95.
International Federation of Robotics (IFR)
,
2020
,
IFR Executive Summary World Robotics 2020 Industrial Robots
,
International Federation of Robotics (IFR)
,
Frankfurt
.
96.
International Federation of Robotics (IFR)
,
2018
,
IFR World Robotics 2019 Preview
,
International Fereration of Robotics
,
Frankfurt
.
97.
International Federation of Robotics (IFR)
,
2017
,
IFR World Robotics Statistics
,
International Fereration of Robotics
,
Frankfurt
.
98.
Artuc
,
E.
,
Bastos
,
P.
, and
Rijkers
,
B.
,
2018
,
Robots, Tasks and Trade
,
The World Bank
.
99.
Investment Research and Investment Research SelectUSA
,
2020
, “
Robots and the Economy—The Role of Automation in Driving Productivity Growth
.”
100.
2019
, “
Leidorf CNC
,” https://www.leidorf.com/, Accessed October 19, 2021.
101.
TIMBERBOT—Leading Robotics in Timber
,” TIMBERBOT. https://timberbot.de/, Accessed July 6, 2022.
102.
Hans Hundegger AG—Unternehmen
,” Hans Hundegger AG, https://www.hundegger.com/de-de/unternehmen, Accessed July 6, 2022.
103.
Österreichischer Agrarverlag Druck- und Verlagsges.b.b.H. Nfg. KG
,
2022
, “
Holzkurier 20.22
,” Holzkurier, (20.22).
104.
North Data: Hans Hundegger AG, Hawangen
,” www.northdata.de, Accessed January 19, 2021.
105.
HOMAG AG
,
2019
, “
Jahresabschluss HOMAG Group AG 2018
.”
106.
HOPMAG AG
,
2020
, “
Jahresabschluss HOMAG Group AG 2019
.”
107.
Kittl
,
D.
,
2021
, “
Stäubli Interview
,” Stäubli International AG.
108.
Piatke
,
W.
,
2021
, “
Interview: Wolfgang Piatke, Vertriebsleiter Hundegger AG
.”
109.
Erlach
,
K.
,
2007
,
Wertstromdesign: der Weg zur Schlanken Fabrik
,
Springer
,
Berlin
.
110.
Willmann
,
J.
,
Knauss
,
M.
,
Bonwetsch
,
T.
,
Apolinarska
,
A. A.
,
Gramazio
,
F.
, and
Kohler
,
M.
,
2016
, “
Robotic Timber Construction—Expanding Additive Fabrication to New Dimensions
,”
Autom. Constr.
,
61
, pp.
16
23
.
111.
Chai
,
H.
,
Marino
,
D.
,
So
,
C. P.
, and
Yuan
,
P. F.
,
2019
, “
Design for Mass Customization Robotic Realization of a Timber Tower With Interlocking Joints
,”
Ubiquity and Autonomy—Paper Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture, ACADIA 2019
,
Austin, TX
,
Oct. 24–26
, pp.
564
572
.
You do not currently have access to this content.