Abstract

We developed a deep fusion methodology of nondestructive in-situ thermal and ex-situ ultrasonic images for porosity detection in laser-based additive manufacturing (LBAM). A core challenge with the LBAM is the lack of fusion between successive layers of printed metal. Ultrasonic imaging can capture structural abnormalities by passing waves through successive layers. Alternatively, in-situ thermal images track the thermal history during fabrication. The proposed sensor fusion U-Net methodology fills the gap in fusing in-situ images with ex-situ images by employing a two-branch convolutional neural network (CNN) for feature extraction and segmentation to produce a 2D image of porosity. We modify the U-Net framework with the inception and long short term memory (LSTM) blocks. We validate the models by comparing our single modality models and fusion models with ground truth X-ray computed tomography (XCT) images. The inception U-Net fusion model achieved the highest mean intersection over union score of 0.93.

References

1.
Marshall
,
G. J.
,
Thompson
,
S. M.
, and
Shamsaei
,
N.
,
2016
, “
Data Indicating Temperature Response of Ti6Al-4V Thin-Walled Structure During Its Additive Manufacture Via Laser Engineered Net Shaping
,”
Data Brief
,
7
, pp.
697
703
.
2.
Ning
,
J.
,
Wang
,
W.
,
Zamorano
,
B.
, and
Liang
,
S.
,
2019
, “
Analytical Modeling of Lack-of-Fusion Porosity in Metal Additive Manufacturing
,”
Appl. Phys. A
,
125
(
11
), pp.
1
11
.
3.
Khanzadeh
,
M.
,
Chowdhury
,
S.
,
Marufuzzaman
,
M.
,
Tschopp
,
M. A.
, and
Bian
,
L.
,
2018
, “
Porosity Prediction: Supervised-Learning of Thermal History for Direct Laser Deposition
,”
J. Manuf. Syst.
,
47
, pp.
69
82
.
4.
Coeck
,
S.
,
Bisht
,
M.
,
Plas
,
J.
, and
Verbist
,
F.
,
2019
, “
Prediction of Lack of Fusion Porosity in Selective Laser Melting Based on Melt Pool Monitoring Data
,”
Addit. Manuf.
,
25
, pp.
347
356
.
5.
Tang
,
M.
,
Pistorius
,
P. C.
, and
Beuth
,
J. L.
,
2017
, “
Prediction of Lack-of-Fusion Porosity for Powder Bed Fusion
,”
Addit. Manuf.
,
14
, pp.
39
48
.
6.
Malekipour
,
E.
, and
El-Mounayri
,
H.
,
2018
, “
Common Defects and Contributing Parameters in Powder Bed Fusion AM Process and Their Classification for Online Monitoring and Control: A Review
,”
Int. J. Adv. Manuf. Technol.
,
95
(
1–4
), pp.
527
550
.
7.
Tian
,
Q.
,
Guo
,
S.
,
Melder
,
E.
,
Bian
,
L.
, and
Guo
,
W.
,
2021
, “
Deep Learning-Based Data Fusion Method for In Situ Porosity Detection in Laser-Based Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
143
(
4
), p.
041011
.
8.
Marcantonio
,
V.
,
Monarca
,
D.
,
Colantoni
,
A.
, and
Cecchini
,
M.
,
2019
, “
Ultrasonic Waves for Materials Evaluation in Fatigue, Thermal and Corrosion Damage: A Review
,”
Mech. Syst. Signal Process
,
120
, pp.
32
42
.
9.
Maev
,
R.
, and
Seviaryn
,
F.
,
2019
, “Ultrasonic Imaging in Biomedical Applications,”
Encyclopedia of Biomedical Engineering
, p.
515
.
10.
Mandache
,
C.
,
2019
, “
Overview of Non-Destructive Evaluation Techniques for Metal-Based Additive Manufacturing
,”
Mater. Sci. Technol.
,
35
(
9
), pp.
1007
1015
.
11.
Pereira
,
J. C.
,
Zubiri
,
F.
,
Garmendia
,
M. J.
,
Tena Mesa
,
M.
,
Gonzalez
,
H.
, and
López de Lacalle
,
L. N.
,
2022
, “
Study of Laser Metal Deposition Additive Manufacturing, CNC Milling, and NDT Ultrasonic Inspection of IN718 Alloy Preforms
,”
Int. J. Adv. Manuf. Technol.
,
120
(
3–4
), pp.
2022
2406
.
12.
Tian
,
Z.
,
Yu
,
L.
, and
Leckey
,
C.
,
2016
, “
Rapid Guided Wave Delamination Detection and Quantification in Composites Using Global-Local Sensing
,”
Smart Mater. Struct.
,
25
(
8
), p.
085042
.
13.
Thompson
,
A.
,
Maskery
,
I.
, and
Leach
,
R. K.
,
2016
, “
X-ray Computed Tomography for Additive Manufacturing: A Review
,”
Meas. Sci. Technol.
,
27
(
7
), p.
072001
.
14.
du Plessis
,
A.
,
le Roux
,
S. G.
, and
Guelpa
,
A.
,
2016
, “
Comparison of Medical and Industrial X-ray Computed Tomography for Non-Destructive Testing
,”
Case Stud. Nondestruct. Test. Eval.
,
6
(
A
), pp.
17
25
.
15.
Liu
,
Y.
,
Chen
,
X.
,
Wang
,
Z.
,
Ward
,
R.
, and
Wang
,
X.
,
2018
, “
Deep Learning for Pixel-Level Image Fusion: Recent Advances and Future Prospects
,”
Inf. Fusion
,
42
, pp.
158
173
.
16.
Zhou
,
T.
,
Ruan
,
S.
, and
Canu
,
S.
,
2020
, “
A Review: Deep Learning for Medical Image Segmentation Using Multi-modality Fusion
,”
Array
,
3-4
.
Article 100004
.
17.
Long
,
J.
,
Shelhamer
,
E.
, and
Darrell
,
T.
,
2015
, “
Fully Convolutional Networks for Semantic Segmentation
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
,
Boston, MA
,
June 7–12
.
18.
Ronneberger
,
O.
,
Fischer
,
P.
, and
Brox
,
T.
,
2015
, “
U-Net: Convolutional Networks for Biomedical Image Segmentation
,”
arXiv:abs/1505.04597
. https://arxiv.org/abs/1505.04597
19.
Ibtehaz
,
N.
, and
Rahman
,
M. S.
,
2020
, “
MultiResUNet: Rethinking the U-Net Architecture for Multimodal Biomedical Image Segmentation
,”
Neur. Netw.
,
121
, pp.
74
87
.
20.
Balit
,
E.
, and
Ghadli
,
A.
,
2021
, “
GMFNet: Gated Multimodal Fusion Network for Visible-Thermal Semantic Segmentation
.”
21.
Gao
,
H.
,
Yuan
,
H.
,
Wang
,
Z.
, and
Ji
,
S.
,
2020
, “
Pixel Transposed Convolutional Networks
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
42
(
5
), pp.
1218
1227
.
22.
Dolz
,
J.
,
Ayed
,
I. B.
, and
Desrosiers
,
C.
,
2018
, “
Dense Multi-Path U-Net for Ischemic Stroke Lesion Segmentation in Multiple Image Modalities
,”
arXiv:1810.07003
. https://arxiv.org/abs/1810.07003
23.
Stratonics
,
2016
, “
Heat Flow Sensors: Additive Manufacturing: Sensors
.”
24.
Dantin
,
M. J.
,
Furr
,
W. M.
, and
Priddy
,
M. W.
,
2022
, “
Toward a Physical Basis for a Predictive Finite Element Thermal Model of the Lens Process Leveraging Dual Wavelength Pyrometer Datasets
,”
Integr. Mater. Manuf. Innov.
,
11
(
3
), pp.
407
417
.
25.
Nikon
,
2021
, “
Series Inspection CT: X-ray CT Systems: Nikon Metrology
.”
26.
VolumeGraphics
,
2021
,
Vgstudio max
.
27.
Pedregosa
,
F.
,
Varoquaux
,
G.
,
Gramfort
,
A.
,
Michel
,
V.
,
Thirion
,
B.
,
Grisel
,
O.
,
Blondel
,
M.
, et al
,
2011
, “
Scikit-Learn: Machine Learning in Python
,”
J. Mach. Learn. Res.
,
12
(
85
), pp.
2825
2830
.
28.
Nagi
,
J.
,
Ducatelle
,
F.
,
Di Caro
,
G. A.
,
Cireşan
,
D.
,
Meier
,
U.
,
Giusti
,
A.
,
Nagi
,
F.
,
Schmidhuber
,
J.
, and
Gambardella
,
L. M.
,
2011
, “
Max-Pooling Convolutional Neural Networks for Vision-Based Hand Gesture Recognition
,”
2011 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)
,
Kuala Lumpur, Malaysia
,
Nov. 16–18
, pp.
342
347
.
29.
Rahman
,
M.
, and
Wang
,
Y
,
2016
, “
Optimizing Intersection-Over-Union in Deep Neural Networks for Image Segmentation
,”
International Symposium on Visual Computing
,
Las Vegas, NV
,
Dec. 12–14
, Vol. 10072, pp.
234
244
.
30.
Van Beers
,
F.
,
Lindström
,
A.
,
Okafor
,
E.
, and
Wiering
,
M.
,
2019
, “
Deep Neural Networks With Intersection Over Union Loss for Binary Image Segmentation
,”
ICPRAM.
,
Prague, Czech Republic
,
Feb. 19–21
.
31.
PirahanSiah
,
F.
,
Abdullah
,
S. N. H. S.
, and
Sahran
,
S.
,
2010
, “
Adaptive Image Segmentation Based on Peak Signal-to-Noise Ratio for a License Plate Recognition System
,”
2010 International Conference on Computer Applications and Industrial Electronics
,
Kuala Lumpur, Malaysia
,
Dec. 5–8
, pp.
468
472
.
32.
Kromp
,
F.
,
Fischer
,
L.
,
Bozsaky
,
E.
,
Ambros
,
I. M.
,
Dorr
,
W.
,
Beiske
,
K.
,
Ambros
,
P. F.
,
Hanbury
,
A.
, and
Taschner-Mandl
,
S.
,
2021
, “
Evaluation of Deep Learning Architectures for Complex Immunofluorescence Nuclear Image Segmentation
,”
IEEE Trans. Med. Imag.
,
40
(
7
), pp.
1934
1949
.
33.
Kingma
,
D. P.
, and
Ba
,
J.
,
2014
, “
Adam: A Method for Stochastic Optimization
.”
You do not currently have access to this content.