Abstract

Wear- yet impact-resistant demand is a big challenge for coated components under heavy-load service condition. To solve this high-performance manufacturing problem, a new strategy of design for manufacturing (DFM) with integrated design and processing is developed to incorporate processing effect on final performance via the pivot role of surface integrity. An impact performance model and the impact tester are constructed for a component with coated flat block/bulk cylinder mates for potential application in hydraulic machinery. A WC-12Ni/Ni60A two-layer coating on 17-4PH martensitic steel substrate is designed with thermal spray process. Impact crater depth, surface hardening, and residual stresses are identified as major surface integrity parameters determining wear/impact performance by the modeling with testing. The design parameters of geometry, material, and structure are quantitatively linked to the final performance by a process signature (PS) correlative analysis on the identified surface integrity to internal material loading of plastic/elastic strain energies. The PS correlation posts coating thickness as a high-sensitivity parameter for design, facilitating a buffering effect of reduced peak stresses among the coating-substrate system. The DFM optimization is understood by irreversible thermodynamics as reducing energy dissipation of the internal material loading from the external impact loads. The manufacturing inverse problem is thus solved by material-oriented regularization (MOR) on the homologous PS correlations integrating the design and processing phases. The manufactured component, with optimal Ni60A interlayer thickness of 75–100 µm at a top WC-12Ni coating of 200 µm, achieves a desired performance of up to 6000 impacts under a nominal load of 15 kN.

References

1.
McMaster
,
S. J.
,
Liskiewicz
,
T. W.
,
Neville
,
A.
, and
Beake
,
B. D.
,
2020
, “
Probing Fatigue Resistance in Multi-layer DLC Coatings by Micro-and Nano-Impact: Correlation to Erosion Tests
,”
Surf. Coat. Technol.
,
402
, p.
126319
.
2.
Beake
,
B. D.
,
Isern
,
L.
,
Endrino
,
J. L.
,
Liskiewicz
,
T. W.
, and
Shi
,
X.
,
2021
, “
Micro-Scale Impact Resistance of Coatings on Hardened Tool Steel and Cemented Carbide
,”
Mater. Lett.
,
284
(
Part 1
), p.
129009
.
3.
Venkatesh
,
L.
,
Pitchuka
,
S. B.
,
Sivakumar
,
G.
,
Gundakaram
,
R. C.
,
Joshi
,
S. V.
, and
Samajdar
,
I.
,
2017
, “
Microstructural Response of Various Chromium Carbide Based Coatings to Erosion and Nano Impact Testing
,”
Wear
,
386–387
, pp.
72
79
.
4.
Kiilakoski
,
J.
,
Langlade
,
C.
,
Koivuluoto
,
H.
, and
Vuoristo
,
P.
,
2019
, “
Characterizing the Micro-Impact Fatigue Behavior of APS and HVOF-Sprayed Ceramic Coatings
,”
Surf. Coat. Technol.
,
371
, pp.
245
254
.
5.
Best
,
J. P.
,
Polyakov
,
M.
,
Shinde
,
D.
,
Colliander
,
M. H.
,
Wehrs
,
J.
,
Michler
,
J.
, and
Morstein
,
M.
,
2018
, “
Ni Nanocluster Composites for Enhanced Impact Resistance of Multilayered Arc-PVD Ceramic Coatings
,”
Surf. Coat. Technol.
,
354
, pp.
360
368
.
6.
Daniel
,
J.
,
Souček
,
P.
,
Grossman
,
J.
,
Zábranský
,
L.
,
Bernátová
,
K.
,
Buršíková
,
V.
,
Fořt
,
T.
,
Vašina
,
P.
, and
Sobota
,
J.
,
2020
, “
Adhesion and Dynamic Impact Wear of Nanocomposite TiC-Based Coatings Prepared by DCMS and HiPIMS
,”
Int. J. Refract. Met. Hard Mater.
,
86
, p.
105123
.
7.
David
,
C. N.
,
Athanasiou
,
M. A.
,
Anthymidis
,
K. G.
, and
Gotsis
,
P. K.
,
2008
, “
Impact Fatigue Failure Investigation of HVOF Coatings
,”
J. ASTM Int.
,
5
(
6
), p.
JAI101571
.
8.
Barletta
,
M.
,
Bolelli
,
G.
,
Bonferroni
,
B.
, and
Lusvarghi
,
L.
,
2009
, “
Wear and Corrosion Behavior of HVOF-Sprayed WC-CoCr Coatings on Al Alloys
,”
J. Therm. Spray Technol.
,
19
(
1–2
), pp.
358
367
.
9.
Bobzin
,
K.
,
Zhao
,
L.
,
Öte
,
M.
,
Königstein
,
T.
, and
Steeger
,
M.
,
2018
, “
Impact Wear of an HVOF-Sprayed Cr3C2-NiCr Coating
,”
Int. J. Refract. Met. Hard Mater.
,
70
, pp.
191
196
.
10.
Fayyazi
,
S.
,
Kasraei
,
M.
, and
Bahrololoom
,
M. E.
,
2019
, “
Improving Impact Resistance of High-Velocity Oxygen Fuel-Sprayed WC-17Co Coating Using Taguchi Experimental Design
,”
J. Therm. Spray Technol.
,
28
(
4
), pp.
706
716
.
11.
Henderson
,
C. N.
,
Monteith
,
J. E.
,
Euripides
,
S. R.
,
Godard
,
R.
,
Predecki
,
P.
, and
Kumosa
,
M.
,
2020
, “
Impact Protection of Borosilicate Glass Plates With Elastomeric Coatings in Drop Tower Tests
,”
Int. J. Impact. Eng.
,
137
, p.
103460
.
12.
Schulz
,
C.
,
Schläfer
,
T.
,
Plowman
,
J.
, and
Hall
,
C.
,
2020
, “
Considering Impact and Corrosion Resistance in the Performance of Heavy Wear Resistant Coatings
,”
Surf. Eng.: Appl. Adv. Manuf.
,
72
(
12
), pp.
4624
4631
.
13.
Shojaei
,
P.
,
Trabia
,
M.
,
O’Toole
,
B.
,
Jennings
,
R.
,
Zhang
,
X.
, and
Liao
,
Y.
,
2020
, “
Enhancing Hypervelocity Impact Resistance of Titanium Substrate Using Ti/SiC Metal Matrix Nanocomposite Coating
,”
Compos. Part B: Eng.
,
194
, p.
108068
.
14.
Kusiak
,
A.
,
2018
, “
Smart Manufacturing
,”
Int. J. Prod. Res.
,
56
, pp.
508
517
.
15.
Mittal
,
S.
,
Khan
,
M. A.
,
Romero
,
D.
, and
Wuest
,
T.
,
2019
, “
Smart Manufacturing: Characteristics, Technologies and Enabling Factors
,”
Proc. Inst. Mech. Eng. Part B.
,
233
(
5
), pp.
1342
1361
.
16.
O’Brien
,
J. M.
,
Montgomery
,
S.
,
Yaghi
,
A.
, and
Afazov
,
S. M.
,
2021
, “
Process Chain Simulation of Laser Powder Bed Fusion Including Heat Treatment and Surface Hardening
,”
CIRP J. Manuf. Sci. Technol.
,
32
, pp.
266
276
.
17.
Giachini
,
P. A. G. S.
,
Gupta
,
S. S.
,
Wang
,
W.
,
Wood
,
D.
,
Yunusa
,
M.
,
Baharlou
,
E.
,
Sitti
,
M.
, and
Menges
,
A.
,
2020
, “
Additive Manufacturing of Cellulose-Based Materials With Continuous, Multidirectional Stiffness Gradients
,”
Sci. Adv.
,
6
(
8
), p.
eaay0929
.
18.
Lei
,
M. K.
,
Miao
,
W. L.
,
Zhu
,
X. P.
,
Zhu
,
B.
, and
Guo
,
D. M.
,
2021
, “
High-Performance Manufacturing Enabling Integrated Design and Processing of Products: A Case Study of Metal Cutting
,”
CIRP J. Manuf. Sci. Technol.
,
35
, pp.
178
192
.
19.
Sambu
,
S.
,
Chen
,
Y.
, and
Rosen
,
D. W.
,
2004
, “
Geometric Tailoring: A Design for Manufacturing Method for Rapid Prototyping and Rapid Tooling
,”
ASME J. Mech. Des.
,
126
(
4
), pp.
571
580
.
20.
Ranjan
,
R.
,
Samant
,
R.
, and
Anand
,
S.
,
2017
, “
Integration of Design for Manufacturing Methods With Topology Optimization in Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
139
(
6
), p.
061007
.
21.
Sagar
,
V. R.
,
Lorin
,
S.
,
Wärmefjord
,
K.
, and
Söderberg
,
R.
,
2021
, “
A Robust Design Perspective on Factors Influencing Geometric Quality in Metal Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
143
(
7
), p.
071011
.
22.
Chen
,
N.
, and
Frank
,
M. C.
,
2021
, “
Design for Manufacturing: Geometric Manufacturability Evaluation for Five-Axis Milling
,”
ASME J. Manuf. Sci. Eng.
,
143
(
8
), p.
081007
.
23.
Brinksmeier
,
E.
,
Meyer
,
D.
,
Heinzel
,
C.
,
Lübben
,
T.
,
Sölter
,
J.
,
Langenhorst
,
L.
,
Frerichs
,
F.
,
Kämmler
,
J.
,
Kohls
,
E.
, and
Kuschel
,
S.
,
2018
, “
Process Signature-The Missing Link to Predict Surface Integrity in Machining
,”
Proc. CIRP
,
71
, pp.
3
10
.
24.
Uddin
,
M.
,
Santifoller
,
R.
,
Hall
,
C.
, and
Schlaefer
,
T.
,
2022
, “
A Grinding-Burnishing Approach to Enhancing Surface Integrity, Tribological, and Corrosion Behavior of Laser-Cladded AISI 431 Alloys
,”
ASME J. Manuf. Sci. Eng.
,
144
(
7
), p.
071003
.
25.
Buchkremer
,
S.
, and
Klocke
,
F.
,
2017
, “
Compilation of a Thermodynamics Based Process Signature for the Formation of Residual Surface Stresses in Metal Cutting
,”
Wear
,
376–377
(
Part B
), pp.
1156
1163
.
26.
Lei
,
M. K.
,
Zhu
,
X. P.
, and
Guo
,
D. M.
,
2016
, “
Reducing Geometrical, Physical and Chemical Constraints in Surface Integrity of High Performance Stainless Steel Components by Surface Modification
,”
ASME J. Manuf. Sci. Eng.
,
138
(
4
), p.
044501
.
27.
Zhu
,
X. P.
,
Du
,
P. C.
,
Meng
,
Y.
,
Lei
,
M. K.
, and
Guo
,
D. M.
,
2017
, “
Solution to Inverse Problem of Manufacturing by Surface Modification With Controllable Surface Integrity Correlated to Performance: A Case Study of Thermally Sprayed Coatings for Wear Performance
,”
ASME J. Tribol.
,
139
(
6
), p.
061604
.
28.
Zhou
,
J.
,
Qiu
,
C. J.
, and
Cheng
,
X. Y.
,
2011
, “
Finite Element Simulation of Temperature Field on Laser Cladding Layers Regulated by Micro-Forging
,”
Adv. Mater. Res.
,
328–330
, pp.
1417
1420
.
29.
Pan
,
J. J.
,
Hu
,
S. S.
,
Niu
,
A. N.
, and
Yang
,
L. J.
,
2016
, “
Numerical Analysis of Particle Impacting and Bonding Processes During High Velocity Oxygen Fuel Spraying Process
,”
Appl. Surf. Sci.
,
366
, pp.
187
192
.
30.
Meng
,
Y.
,
Zhu
,
X. P.
,
Du
,
P. C.
, and
Lei
,
M. K.
,
2018
, “
High Frequency Induction Remelting of Ni60-40WC Coating Prepared by High Velocity Oxy-Fuel Spraying and Its Water-Lubricated Wear Resistance
,”
Mater. Prot.
,
51
(
12
), pp.
82
89
.
31.
Qiu
,
L. S.
,
Zhu
,
X. D.
,
Lu
,
S.
,
He
,
G. Y.
, and
Xu
,
K. W.
,
2017
, “
Quantitative Evaluation of Bonding Strength for Hard Coatings by Interfacial Fatigue Strength Under Cyclic Indentation
,”
Surf. Coat Technol.
,
315
, pp.
303
313
.
32.
Zhu
,
X. P.
,
Meng
,
Y.
,
Jiang
,
S. W.
,
Du
,
P. C.
, and
Lei
,
M. K.
,
2018
, “
Thermal Spray of Cemented Carbide Coatings in Off-Angle Spraying: Correlations Between Process, Coating Features/Characteristics and Performance
,”
J. Thermal Spray Technol.
,
27
(
7
), pp.
1123
1142
.
You do not currently have access to this content.