Abstract

There is an urgent need for developing collaborative process-defect modeling in metal-based additive manufacturing (AM). This mainly stems from the high volume of training data needed to develop reliable machine learning models for in-situ anomaly detection. The requirements for large data are especially challenging for small-to-medium manufacturers (SMMs), for whom collecting copious amounts of data is usually cost prohibitive. The objective of this research is to develop a secured data sharing mechanism for directed energy deposition (DED) based AM without disclosing product design information, facilitating secured data aggregation for collaborative modeling. However, one major obstacle is the privacy concerns that arise from data sharing, since AM process data contain confidential design information, such as the printing path. The proposed adaptive design de-identification for additive manufacturing (ADDAM) methodology integrates AM process knowledge into an adaptive de-identification procedure to mask the printing trajectory information in metal-based AM thermal history, which otherwise discloses substantial printing path information. This adaptive approach applies a flexible data privacy level to each thermal image based on its similarity with the other images, facilitating better data utility preservation while protecting data privacy. A real-world case study was used to validate the proposed method based on the fabrication of two cylindrical parts using a DED process. These results are expressed as a Pareto optimal solution, demonstrating significant improvements in privacy gain and minimal utility loss. The proposed method can facilitate privacy improvements of up to 30% with as little as 0% losses in dataset utility after de-identification.

References

1.
Khanzadeh
,
M.
,
Tian
,
W.
,
Yadollahi
,
A.
,
Doude
,
H. R.
,
Tschopp
,
M. A.
, and
Bian
,
L.
,
2018
, “
Dual Process Monitoring of Metal-Based Additive Manufacturing Using Tensor Decomposition of Thermal Image Streams
,”
Addit. Manuf.
,
23
, pp.
443
456
.
2.
Khanzadeh
,
M.
,
Chowdhury
,
S.
,
Marufuzzaman
,
M.
,
Tschopp
,
M. A.
, and
Bian
,
L.
,
2018
, “
Porosity Prediction: Supervised-Learning of Thermal History for Direct Laser Deposition
,”
J. Manuf. Syst.
,
47
, pp.
69
82
.
3.
Seifi
,
S. H.
,
Tian
,
W.
,
Doude
,
H.
,
Tschopp
,
M. A.
, and
Bian
,
L.
,
2019
, “
Layer-Wise Modeling and Anomaly Detection for Laser-Based Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
141
(
8
), p.
081013
.
4.
Qin
,
J.
,
Hu
,
F.
,
Liu
,
Y.
,
Witherell
,
P.
,
Wang
,
C. C. L.
,
Rosen
,
D. W.
,
Simpson
,
T. W.
,
Lu
,
Y.
, and
Tang
,
Q.
,
2022
, “
Research and Application of Machine Learning for Additive Manufacturing
,”
Addit. Manuf.
,
52
, pp.
102691
.
5.
Liu
,
C.
,
Tian
,
W.
, and
Kan
,
C.
,
2022
, “
When AI Meets Additive Manufacturing: Challenges and Emerging Opportunities for Human-Centered Products Development
,”
J. Manuf. Syst.
,
64
, pp.
648
656
.
6.
Patel
,
J.
,
2019
,
Data-Driven Modeling for Additive Manufacturing of Metals: Proceedings of a Workshop
,
National Academies Press
,
Washington, DC
.
7.
Aggour
,
K.
,
Aman
,
R.
,
Bell
,
T.
,
Browne
,
C.
,
Casukhela
,
R.
,
Clemente
,
M.
,
Cobb
,
K.
, et al
Strategic Guide: Additive Manufacturing Data Management and Schema
”.
8.
Cheng
,
L.
,
Tsung
,
F.
, and
Wang
,
A.
,
2017
, “
A Statistical Transfer Learning Perspective for Modeling Shape Deviations in Additive Manufacturing
,”
IEEE Robot. Autom. Lett.
,
2
(
4
), pp.
1988
1993
.
9.
Huang
,
X.
,
Xie
,
T.
,
Wang
,
Z.
,
Chen
,
L.
,
Zhou
,
Q.
, and
Hu
,
Z.
,
2022
, “
A Transfer Learning-Based Multi-Fidelity Point-Cloud Neural Network Approach for Melt Pool Modeling in Additive Manufacturing
,”
ASCE-ASME J. Risk Uncert. Eng. Sys. Part B Mech. Eng.
,
8
(
1
), p.
011104
.
10.
Ren
,
J.
,
Wei
,
A. T.
,
Jiang
,
Z.
,
Wang
,
H.
, and
Wang
,
X.
,
2021
, “
Improved Modeling of Kinematics-Induced Geometric Variations in Extrusion-Based Additive Manufacturing Through Between-Printer Transfer Learning
,”
IEEE Trans. Autom. Sci. Eng.
,
19
(
3
), pp.
2310
2321
.
11.
Zhuang
,
F.
,
Qi
,
Z.
,
Duan
,
K.
,
Xi
,
D.
,
Zhu
,
Y.
,
Zhu
,
H.
,
Xiong
,
H.
, et al
,
2021
, “
A Comprehensive Survey on Transfer Learning
,”
Proc. IEEE
,
109
(
1
), pp.
43
76
.
12.
McCann
,
R.
,
Obeidi
,
M. A.
,
Hughes
,
C.
,
McCarthy
,
É
,
Egan
,
D. S.
,
Vijayaraghavan
,
R. K.
,
Joshi
,
A. M.
, et al
,
2021
, “
In-Situ Sensing, Process Monitoring and Machine Control in Laser Powder Bed Fusion: A Review
,”
Addit. Manuf.
,
45
, p.
102058
.
13.
Tschopp
,
M. A.
,
2017
, “
A Methodology for Predicting Porosity From Thermal Imaging of Melt Pools in Additive Manufacturing Thin Wall Sections
,”
ASME 2017 12th International Manufacturing Science and Engineering Conference
, Los Angeles, CA, June 4–8, pp.
1
10
.
14.
Khanzadeh
,
M.
,
Chowdhury
,
S.
,
Tschopp
,
M. A.
,
Doude
,
H. R.
,
Marufuzzaman
,
M.
, and
Bian
,
L.
,
2019
, “
In-Situ Monitoring of Melt Pool Images for Porosity Prediction in Directed Energy Deposition Processes
,”
IISE Trans
,
51
(
5
), pp.
437
455
.
15.
Tian
,
Q.
,
Guo
,
S.
,
Melder
,
E.
,
Bian
,
L.
, and
Grace
,
G. W.
,
2021
, “
Deep Learning-Based Data Fusion Method for In Situ Porosity Detection in Laser-Based Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
143
(
4
), p.
041011
.
16.
Scime
,
L.
,
Siddel
,
D.
,
Baird
,
S.
, and
Paquit
,
V.
,
2020
, “
Layer-Wise Anomaly Detection and Classification for Powder Bed Additive Manufacturing Processes: A Machine-Agnostic Algorithm for Real-Time Pixel-Wise Semantic Segmentation
,”
Addit. Manuf.
,
36
, p.
101453
.
17.
Mahmoudi
,
M.
,
Ezzat
,
A. A.
, and
Elwany
,
A.
,
2019
, “
Layerwise Anomaly Detection in Laser Powder-Bed Fusion Metal Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
141
(
3
), p.
031002
.
18.
Esfahani
,
M. N.
,
Bappy
,
M. M.
,
Bian
,
L.
, and
Tian
,
W.
,
2022
, “
In-Situ Layer-Wise Certification for Direct Laser Deposition Processes Based on Thermal Image Series Analysis
,”
J. Manuf. Process
,
75
, pp.
895
902
.
19.
Pan
,
S. J.
, and
Yang
,
Q.
,
2010
, “
A Survey on Transfer Learning
,”
IEEE Trans. Knowl. Data Eng.
,
22
(
10
), pp.
1345
1359
.
20.
Liu
,
S.
,
Stebner
,
A. P.
,
Kappes
,
B. B.
, and
Zhang
,
X.
,
2021
, “
Machine Learning for Knowledge Transfer Across Multiple Metals Additive Manufacturing Printers
,”
Addit. Manuf.
,
39
, p.
101877
.
21.
Francis
,
J.
,
Sabbaghi
,
A.
,
Ravi Shankar
,
M.
,
Ghasri-Khouzani
,
M.
, and
Bian
,
L.
,
2020
, “
Efficient Distortion Prediction of Additively Manufactured Parts Using Bayesian Model Transfer Between Material Systems
,”
ASME J. Manuf. Sci. Eng.
,
142
(
5
), p.
051001
.
22.
Hu
,
Q.
,
Chen
,
R.
,
Yang
,
H.
, and
Kumara
,
S.
,
2020
, “
Privacy-Preserving Data Mining for Smart Manufacturing
,”
Smart Sustain. Manuf. Syst.
,
4
(
2
), p.
20190043
.
23.
Samarati
,
P.
, and
Sweeney
,
L.
,
2001
, “
Protecting Privacy When Disclosing Information: k-Anonymity and Its Enforcement Through Generalization and Suppression
,”
IEEE Trans. Knowl. Data Eng.
,
13
(
6
), pp.
1010
1027
. doi.org/10.1109/69.971193
24.
Islam
,
M. N.
,
Tu
,
Y.
,
Hossen
,
M. I.
,
Guo
,
S.
, and
Hei
,
2021
, “A Survey on Limitation, Security and Privacy Issues on Additive Manufacturing.” http://arxiv.org/abs/2103.06400
25.
Yampolskiy
,
M.
,
Andel
,
T. R.
,
McDonald
,
J. T.
,
Glisson
,
W. B.
, and
Yasinsac
,
A.
,
2014
, “
Intellectual Property Protection in Additive Layer Manufacturing: Requirements for Secure Outsourcing
,”
ACM International Conference Proceeding Series
,
New Orleans, LA
,
Dec. 8–12
.
26.
Chhetri
,
S. R.
,
Rashid
,
N.
,
Faezi
,
S.
, and
al Faruque
,
M. A.
,
2017
, “
Security Trends and Advances in Manufacturing Systems in the Era of Industry 4.0
,”
IEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers, ICCAD
,
San Jose, CA
,
Nov. 13–16
, pp.
1039
1046
.
27.
Tao
,
F.
,
Qi
,
Q.
,
Liu
,
A.
, and
Kusiak
,
A.
,
2018
, “
Data-Driven Smart Manufacturing
,”
J. Manuf. Syst.
,
48
, pp.
157
169
.
28.
Mamun
,
A.
,
Liu
,
C.
,
Kan
,
C.
, and
Tian
,
W.
,
2021
, “
Real-Time Process Authentication for Additive Manufacturing Processes Based on In-Situ Video Analysis
,”
Procedia Manuf.
,
53
, pp.
697
704
.
29.
Zeltmann
,
S. E.
,
Gupta
,
N.
,
Tsoutsos
,
N. G.
,
Maniatakos
,
M.
,
Rajendran
,
J.
, and
Karri
,
R.
,
2016
, “
Manufacturing and Security Challenges in 3D Printing
,”
JOM
,
68
(
7
), pp.
1872
1881
.
30.
Chhetri
,
S. R.
,
Canedo
,
A.
, and
al Faruque
,
M. A.
,
2016
, “
KCAD: Kinetic Cyber-Attack Detection Method for Cyber-Physical Additive Manufacturing Systems
,”
IEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers, ICCAD
,
Austin, TX
,
Nov. 7–10
.
31.
Murthy
,
S.
,
Bakar
,
A. A.
,
Rahim
,
F. A.
, and
Ramli
,
R.
,
2019
, “
A Comparative Study of Data Anonymization Techniques
,”
IEEE 5th International Conference on Big Data Security on Cloud (BigDataSecurity), IEEE International Conference on High Performance and Smart Computing (HPSC), and IEEE International Conference on Intelligent Data and Security
,
Washington, DC
.
32.
Fontaine
,
C.
, and
Galand
,
F.
,
2007
, “
A Survey of Homomorphic Encryption for Nonspecialists
,”
EURASIP J. Inf. Secur.
,
2007
, pp.
1
10
.
33.
Gatlin
,
J.
,
Belikovetsky
,
S.
,
Elovici
,
Y.
,
Skjellum
,
A.
,
Lubell
,
J.
,
Witherell
,
P.
, and
Yampolskiy
,
M.
,
2021
, “
Encryption is Futile: Reconstructing 3D-Printed Models Using the Power Side-Channel
,”
ACM International Conference Proceeding Series
,
San Sebastian, Spain
,
Oct. 6–8
, pp.
135
147
.
34.
Sweeney
,
L.
,
2002
, “
K-Anonymity: A Model for Protecting Privacy
,”
Int. J. Uncertaint. Fuzz. Knowl. Based Syst.
,
10
(
5
), pp.
557
570
.
35.
Zhong
,
S.
,
Yang
,
Z.
, and
Wright
,
R. N.
,
2005
, “
Privacy-Enhancing k-Anonymization of Customer Data
,”
Proceedings of the Twenty-Fourth ACM SIGMOD-SIGACT-SIGART Symposium on Principals of Database System
, pp.
139
147
.
36.
Bhati
,
B. S.
,
Ivanchev
,
J.
,
Bojic
,
I.
,
Datta
,
A.
, and
Eckhoff
,
D.
,
2021
, “
Utility-Driven k-Anonymization of Public Transport User Data
,”
IEEE Access
,
9
, pp.
23608
23623
.
37.
Domingo-Ferrer
,
J.
, and
Torra
,
V.
,
2008
, “
A Critique of k-Anonymity and Some of Its Enhancements
,”
Proceedings of ARES 2008—3rd International Conference on Availability, Security, and Reliability
,
Barcelona, Spain
,
Mar. 4–7
, pp.
990
993
.
38.
LeFevre
,
K.
,
DeWitt
,
D. J.
, and
Ramakrishnan
,
R.
,
2006
, “
Mondrian Multidimensional k-Anonymity
,”
Proceedings of International Conference on Data Engineering
,
Atlanta, GA
,
Apr. 3–8
, p.
25
.
39.
Lin
,
J. L.
, and
Wei
,
M. C.
,
2008
, “
An Efficient Clustering Method for k-Anonymization
,”
ACM International Conference Proceeding Series
,
Nantes, France
,
Mar. 25–29
, Vol. 331, pp.
46
50
.
40.
Ni
,
S.
,
Xie
,
M.
, and
Qian
,
Q.
,
2017
, “
Clustering Based k-Anonymity Algorithm for Privacy Preservation
,”
Int. J. Netw. Secur.
,
19
(
6
), pp.
1062
1071
.
41.
Newton
,
E. M.
,
Sweeney
,
L.
, and
Malin
,
B.
,
2005
, “
Preserving Privacy by De-Identifying Face Images
,”
IEEE Trans. Knowl. Data Eng.
,
17
(
2
), pp.
232
243
.
42.
Gross
,
R.
,
Airoldi
,
E.
,
Malin
,
B.
, and
Sweeney
,
L.
,
2006
, “Integrating Utility Into Face De-Identification,”
Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 3856 LNCS
, pp.
227
242
.
43.
Gross
,
R.
,
Sweeney
,
L.
,
Cohn
,
J.
,
de La Torre
,
F.
, and
Baker
,
S.
,
2009
, “Face De-identification,”
Protecting Privacy in Video Surveillance
,
A.
Senior
, ed.,
Springer London
,
London, UK
.
44.
Du
,
L.
,
Yi
,
M.
,
Blasch
,
E.
, and
Ling
,
H.
,
2014
, “
GARP-Face: Balancing Privacy Protection and Utility Preservation in Face De-Identification
,”
IJCB 2014—2014 IEEE/IAPR International Joint Conference on Biometrics
,
Clearwater, FL
,
Sept. 29–Oct. 2
.
45.
Jourabloo
,
A.
,
Yin
,
X.
, and
Liu
,
X.
,
2015
, “
Attribute Preserved Face De-Identification
,”
Proceedings of 2015 International Conference on Biometrics, ICB 2015
,
Phuket, Thailand
,
May 19–22
, pp.
278
285
.
46.
Gross
,
R.
,
Sweeney
,
L.
,
de La Torre
,
F.
, and
Baker
,
S.
,
2006
, “
Model-Based Face De-Identification
,”
2006 Conference on Computer Vision and Pattern Recognition Workshops
,
New York, NY
,
June 17–22
, p.
161
.
47.
Meng
,
L.
, and
Sun
,
Z.
,
2014
, “
Face De-Identification With Perfect Privacy Protection
,”
2014 37th International Convention on Information and Communication Technology, Electronics and Microelectronics, MIPRO 2014—Proceedings
,
Opatija, Croatia
,
May 26–30
, pp.
1234
1239
.
48.
Li
,
T.
, and
Lin
,
L.
,
2019
, “
AnonymousNet: Natural Face De-Identification With Measurable Privacy
,”
IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
,
Long Beach, CA
,
June 16–17
, pp.
56
65
.
49.
Meden
,
B.
,
Emersic
,
Z.
,
Struc
,
V.
, and
Peer
,
P.
,
2017
, “
k-Same-Net : Neural-Network-Based Face De-identification
,”
2017 International Conference and Workshop on Bioinspired Intelligence (IWOBI)
,
Funchal, Portugal
,
July 10–13
.
50.
Nakamura
,
T.
,
Sakuma
,
Y.
, and
Nishi
,
H.
,
2019
, “
Face Image Anonymization as an Application of Multidimensional Data k-Anonymizer
,”
Proceedings—2019 7th International Symposium on Computing and Networking Workshops, CANDARW 2019
,
Nagasaki, Japan
,
Nov. 26–29
, pp.
155
161
.
51.
Brickell
,
J.
, and
Shmatikov
,
V.
,
2008
, “
The Cost of Privacy: Destruction of Data-Mining Utility in Anonymized Data Publishing
,”
Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
,
Las Vegas, NV
,
August
, pp.
70
78
.
52.
Zhang
,
B.
,
Chen
,
C.
, and
Wang
,
L.
,
Sept. 2020
, “
Privacy-Preserving Transfer Learning Via Secure Maximum Mean Discrepancy
.” http://arxiv.org/abs/2009.11680
53.
Uguroglu
,
S.
, and
Carbonell
,
J.
,
2011
, “
Feature Selection for Transfer Learning
”.
54.
Abbass
,
H. A.
,
Sarker
,
R.
, and
Newton
,
C.
,
2001
, “
PDE: A Pareto-Frontier Differential Evolution Approach for Multi-objective Optimization Problems
,”
Proceedings of the IEEE Conference on Evolutionary Computation, ICEC
,
New Orleans, LA
,
June 6–8
, Vol. 2, pp.
971
978
.
55.
Tian
,
W.
,
Ma
,
J.
, and
Alizadeh
,
M.
,
2019
, “
Energy Consumption Optimization With Geometric Accuracy Consideration for Fused Filament Fabrication Processes
,”
Int. J. Adv. Manuf. Technol.
,
103
(
5–8
), pp.
3223
3233
.
56.
Menardi
,
G.
, and
Torelli
,
N.
,
2014
, “
Training and Assessing Classification Rules With Imbalanced Data
,”
Data Min. Knowl. Discov.
,
28
(
1
), pp.
92
122
.
57.
Dziugaite
,
G. K.
,
Roy
,
D. M.
, and
Ghahramani
,
Z.
,
May 2015
, “
Training Generative Neural Networks Via Maximum Mean Discrepancy Optimization
.” http://arxiv.org/abs/1505.03906
You do not currently have access to this content.