Abstract

Uneven distribution of machining-induced residual stresses (MIRS) caused by dynamic cutting conditions and material internal properties has a significant impact on fatigue resistance, stress corrosion resistance, and accuracy retention of aerospace structural parts. Owing to the challenges in describing residual stress distribution property, this paper proposes a distribution consistency characterization model with high accuracy, as well as a quantitative evaluation strategy in milling titanium alloy. MIRS reduction surrogate model embedded with mechanism knowledge describes the general profile of MIRS in the explicit form. Compared with the surrogate model, the prediction accuracy of MIRS under Bayesian calibration is improved by more than 25.68%. To evaluate the MIRS distribution consistency, self-consistent indexes are innovatively proposed based on the extraction of four fundamental MIRS features in parametric form. The sensitivity analyses between three machining parameters and self-consistent indexes are carried out, guiding in selecting machining parameters in consideration of MIRS distribution consistency. Consequently, this work can provide a novel insight into determining the optimal machining parameters with comprehensive consideration of MIRS features magnitudes and distribution consistency. According to the proposed procedure, there exists a potential for future extensions to other materials and cutting processes with more complex stress distributions.

References

1.
Valicek
,
J.
,
Czan
,
A.
,
Harnicarova
,
M.
,
Sajgalik
,
M.
,
Kusnerova
,
M.
,
Czanova
,
T.
,
Kopal
,
I.
,
Gombar
,
M.
,
Kmec
,
J.
, and
Safar
,
M.
,
2019
, “
A New Way of Identifying, Predicting and Regulating Residual Stress After Chip-Forming Machining
,”
Int. J. Mech. Sci.
,
155
, pp.
343
359
.
2.
Merwin
,
J. E.
, and
Johnson
,
K. L.
,
1963
, “
An Analysis of Plastic Deformation in Rolling Contact
,”
J. Proc. Inst. Mech. Eng.
,
177
(
1
), pp.
676
690
.
3.
Huang
,
X. D.
,
Zhang
,
X. M.
,
Leopold
,
J.
, and
Ding
,
H.
,
2018
, “
Analytical Model for Prediction of Residual Stress in Dynamic Orthogonal Cutting Process
,”
ASME J. Manuf. Sci. Eng.
,
140
(
1
), p.
011002
.
4.
Zhou
,
R. H.
, and
Yang
,
W. Y.
,
2019
, “
Analytical Modeling of Machining-Induced Residual Stresses in Milling of Complex Surface
,”
Int. J. Adv. Manuf. Technol.
,
105
(
1–4
), pp.
565
577
.
5.
Liang
,
X. L.
,
Liu
,
Z. Q.
,
Wang
,
B.
,
Song
,
Q. H.
,
Cai
,
Y. K.
, and
Wan
,
Y.
,
2021
, “
Prediction of Residual Stress With Multi-Physics Model for Orthogonal Cutting Ti-6Al-4 V Under Various Tool Wear Morphologies
,”
J. Mater. Process. Technol.
,
288
.
6.
Lazoglu
,
I.
,
Ulutan
,
D.
,
Alaca
,
B. E.
,
Engin
,
S.
, and
Kaftanoglu
,
B.
,
2008
, “
An Enhanced Analytical Model for Residual Stress Prediction in Machining
,”
CIRP Ann-Manuf. Technol.
,
57
(
1
), pp.
81
84
.
7.
Ulutan
,
D.
, and
Ozel
,
T.
,
2011
, “
Machining Induced Surface Integrity in Titanium and Nickel Alloys: A Review
,”
Int. J. Mach. Tools Manuf.
,
51
(
3
), pp.
250
280
.
8.
Sun
,
J.
, and
Guo
,
Y. B.
,
2009
, “
A Comprehensive Experimental Study on Surface Integrity by End Milling Ti-6Al-4 V
,”
J. Mater. Process. Technol.
,
209
(
8
), pp.
4036
4042
.
9.
Yang
,
D.
,
Liu
,
Z. Q.
,
Ren
,
X. P.
, and
Zhuang
,
P.
,
2016
, “
Hybrid Modeling With Finite Element and Statistical Methods for Residual Stress Prediction in Peripheral Milling of Titanium Alloy Ti-6Al-4 V
,”
Int. J. Mech. Sci.
,
108
, pp.
29
38
.
10.
Zeng
,
H. H.
,
Yan
,
R.
,
Peng
,
F. Y.
,
Zhou
,
L.
, and
Deng
,
B.
,
2017
, “
An Investigation of Residual Stresses in Micro-End-Milling Considering Sequential Cuts Effect
,”
Int. J. Adv. Manuf. Technol.
,
91
(
9–12
), pp.
3619
3634
.
11.
Zhang
,
Z. X.
,
Luo
,
M.
,
Tang
,
K.
, and
Zhang
,
D. H.
,
2020
, “
A New In-Processes Active Control Method for Reducing the Residual Stresses Induced Deformation of Thin-Walled Parts
,”
J. Manuf. Process.
,
59
, pp.
316
325
.
12.
Jiang
,
Z. L.
,
Liu
,
Y. M.
,
Li
,
L.
, and
Shao
,
W. X.
,
2014
, “
A Novel Prediction Model for Thin Plate Deflections Considering Milling Residual Stresses
,”
Int. J. Adv. Manuf. Technol.
,
74
(
1–4
), pp.
37
45
.
13.
Ulutan
,
D.
,
Arisoy
,
Y. M.
,
Ozel
,
T.
, and
Mears
,
L.
,
2014
, “
Empirical Modeling of Residual Stress Profile in Machining Nickel-Based Superalloys Using the Sinusoidal Decay Function
,”
2nd CIRP Conference on Surface Integrity (CSI)
,
Nottingham, UK
,
May 28–30
,
Elsevier Science BV
, pp.
365
370
.
14.
Tan
,
L.
,
Zhang
,
D. H.
,
Yao
,
C. F.
,
Wu
,
D. X.
, and
Zhang
,
J. Y.
,
2017
, “
Evolution and Empirical Modeling of Compressive Residual Stress Profile After Milling, Polishing and Shot Peening for TC17 Alloy
,”
J. Manuf. Process.
,
26
, pp.
155
165
.
15.
Ding
,
W. F.
,
Xu
,
J. H.
,
Chen
,
Z. Z.
,
Fu
,
Y. C.
, and
Su
,
H. H.
,
2010
, “
Relationship Between Embedding Depth and Residual Stress in the cBN Grain of Monolayer Brazed Abrasive Tools
,”
J. Mater. Eng. Perform.
,
19
(
1
), pp.
123
128
.
16.
Yao
,
C. F.
,
Zhao
,
Y.
,
Zhou
,
Z.
,
Wu
,
D. X.
, and
Wang
,
Y.
,
2020
, “
A Surface Integrity Model of TC17 Titanium Alloy by Ultrasonic Impact Treatment
,”
Int. J. Adv. Manuf. Technol.
,
108
(
3
), pp.
881
893
.
17.
Sun
,
S.
,
Brandt
,
M.
, and
Dargusch
,
M. S.
,
2009
, “
Characteristics of Cutting Forces and Chip Formation in Machining of Titanium Alloys
,”
Int. J. Mach. Tools Manuf.
,
49
(
7–8
), pp.
561
568
.
18.
Liu
,
C. R.
, and
Guo
,
Y. B.
,
2000
, “
Finite Element Analysis of the Effect of Sequential Cuts and Tool-Chip Friction on Residual Stresses in a Machined Layer
,”
Int. J. Mech. Sci.
,
42
(
6
), pp.
1069
1086
.
19.
Armarego
,
E. J. A.
, and
Brown
,
R. H.
,
1969
,
The Machining of Metals
,
Prentice Hall Inc.
,
Englewood Cliffs, NJ
.
20.
Zhou
,
L.
,
Peng
,
F. Y.
,
Yan
,
R.
,
Yao
,
P. F.
,
Yang
,
C. C.
, and
Li
,
B.
,
2015
, “
Analytical Modeling and Experimental Validation of Micro End-Milling Cutting Forces Considering Edge Radius and Material Strengthening Effects
,”
Int. J. Mach. Tools Manuf.
,
97
, pp.
29
41
.
21.
Waldorf
,
D. J.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
1998
, “
A Slip-Line Field for Ploughing During Orthogonal Cutting
,”
ASME J. Manuf. Sci. Eng.
,
120
(
4
), pp.
693
699
.
22.
Komanduri
,
R.
, and
Hou
,
Z. B.
,
2001
, “
Thermal Modeling of the Metal Cutting Process—Part II: Temperature Rise Distribution Due to Frictional Heat Source at the Tool-Chip Interface
,”
Int. J. Mech. Sci.
,
43
(
1
), pp.
57
88
.
23.
Komanduri
,
R.
, and
Hou
,
Z. B.
,
2001
, “
Thermal Modeling of the Metal Cutting Process—Part III: Temperature Rise Distribution Due to the Combined Effects of Shear Plane Heat Source and the Tool-Chip Interface Frictional Heat Source
,”
Int. J. Mech. Sci.
,
43
(
1
), pp.
89
107
.
24.
Lin
,
S.
,
Peng
,
F. Y.
,
Wen
,
J.
,
Liu
,
Y. Z.
, and
Yan
,
R.
,
2013
, “
An Investigation of Workpiece Temperature Variation in End Milling Considering Flank Rubbing Effect
,”
Int. J. Mach. Tools Manuf.
,
73
, pp.
71
86
.
25.
Johnson
,
K. L.
,
1985
, “
Contact Mechanics
,”
American Society of Mechanical Engineers
.
26.
Wan
,
M.
,
Ye
,
X. Y.
,
Yang
,
Y.
, and
Zhang
,
W. H.
,
2017
, “
Theoretical Prediction of Machining-Induced Residual Stresses in Three-Dimensional Oblique Milling Processes
,”
Int. J. Mech. Sci.
,
133
, pp.
426
437
.
27.
McDowell
,
D. L.
,
1997
, “
An Approximate Algorithm for Elastic-Plastic Two-Dimensional Rolling/Sliding Contact
,”
Wear
,
211
(
2
), pp.
237
246
.
28.
Su
,
J. C.
,
Young
,
K. A.
,
Ma
,
K.
,
Srivatsa
,
S.
,
Morehouse
,
J. B.
, and
Liang
,
S. Y.
,
2013
, “
Modeling of Residual Stresses in Milling
,”
Int. J. Adv. Manuf. Technol.
,
65
(
5–8
), pp.
717
733
.
29.
Ma
,
Y.
,
Feng
,
P. F.
,
Zhang
,
J. F.
,
Wu
,
Z. J.
, and
Yu
,
D. W.
,
2016
, “
Prediction of Surface Residual Stress After End Milling Based on Cutting Force and Temperature
,”
J. Mater. Process. Technol.
,
235
, pp.
41
48
.
30.
Jiang
,
X. H.
,
Kong
,
X. J.
,
He
,
S. R.
, and
Wu
,
K.
,
2021
, “
Modeling the Superposition of Residual Stresses Induced by Cutting Force and Heat During the Milling of Thin-Walled Parts
,”
J. Manuf. Process.
,
68
(Part A), pp.
356
370
.
31.
Zhang
,
J. H.
, and
Xia
,
P. Q.
,
2017
, “
An Improved PSO Algorithm for Parameter Identification of Nonlinear Dynamic Hysteretic Models
,”
J. Sound Vib.
,
389
, pp.
153
167
.
32.
Jensi
,
R.
, and
Jiji
,
G. W.
,
2016
, “
An Enhanced Particle Swarm Optimization With Levy Flight for Global Optimization
,”
Appl. Soft. Comput.
,
43
, pp.
248
261
.
33.
Chegini
,
S. N.
,
Bagheri
,
A.
, and
Najafi
,
F.
,
2018
, “
PSOSCALF: A New Hybrid PSO Based on Sine Cosine Algorithm and Levy Flight for Solving Optimization Problems
,”
Appl. Soft. Comput.
,
73
, pp.
697
726
.
34.
Xu
,
L. H.
,
Huang
,
C. Z.
,
Li
,
C. W.
,
Wang
,
J.
,
Liu
,
H. L.
, and
Wang
,
X. D.
,
2021
, “
Estimation of Tool Wear and Optimization of Cutting Parameters Based on Novel ANFIS-PSO Method Toward Intelligent Machining
,”
J. Intell. Manuf.
,
32
(
1
), pp.
77
90
.
35.
Saji
,
Y.
, and
Riffi
,
M. E.
,
2016
, “
A Novel Discrete Bat Algorithm for Solving the Travelling Salesman Problem
,”
Neural Comput. Appl.
,
27
(
7
), pp.
1853
1866
.
36.
Valiorgue
,
F.
,
Rech
,
J.
,
Hamdi
,
H.
,
Gilles
,
P.
, and
Bergheau
,
J. M.
,
2012
, “
3D Modeling of Residual Stresses Induced in Finish Turning of an AISI304L Stainless Steel
,”
Int. J. Mach. Tools Manuf.
,
53
(
1
), pp.
77
90
.
37.
Kamada
,
Y.
, and
Sasahara
,
H.
,
2021
, “
Residual Stress Fluctuates Periodically Via the Workpiece Rotation Phase During Low Frequency Vibration Cutting
,”
Precis. Eng.-J. Int. Soc. Precis. Eng. Nanotechnol.
,
72
, pp.
583
594
.
38.
Liu
,
Z. W.
,
Bin
,
L.
,
Liang
,
X. H.
, and
Du
,
A. Y.
,
2022
, “
Quantifying the Subsurface Damage and Residual Stress in Ground Silicon Wafer Using Laser Ultrasonic Technology: A Bayesian Approach
,”
Mech. Syst. Signal Proc.
,
173
, p.
109008
39.
Shen
,
N.
,
Chen
,
L.
, and
Chen
,
R. Z.
,
2022
, “
Displacement Detection Based on Bayesian Inference From GNSS Kinematic Positioning for Deformation Monitoring
,”
Mech. Syst. Signal Proc.
,
167
(Part B), p.
108570
.
40.
Sun
,
H.
,
Peng
,
F. Y.
,
Zhou
,
L.
,
Yan
,
R.
, and
Zhao
,
S. Q.
,
2021
, “
A Hybrid Driven Approach to Integrate Surrogate Model and Bayesian Framework for the Prediction of Machining Errors of Thin-Walled Parts
,”
Int. J. Mech. Sci.
,
192
, p.
106111
.
41.
Chen
,
G.
,
Jiang
,
K.
,
Zhang
,
L. L.
,
Bezold
,
A.
,
Weichert
,
D.
, and
Broeckmann
,
C.
,
2019
, “
A Bayesian Statistics Based Investigation of Binder Hardening’s Influence on the Effective Strength of Particulate Reinforced Metal Matrix Composites (PRMMC)
,”
Int. J. Mech. Sci.
,
159
, pp.
151
164
.
42.
Wang
,
M. Z.
, and
Wu
,
J. J.
,
2019
, “
Identification of Plastic Properties of Metal Materials Using Spherical Indentation Experiment and Bayesian Model Updating Approach
,”
Int. J. Mech. Sci.
,
151
, pp.
733
745
.
43.
Kashyap
,
V.
, and
Ramkumar
,
P.
,
2022
, “
Improved Oxygen Diffusion and Overall Surface Characteristics Using Combined Laser Surface Texturing and Heat Treatment Process of Ti6Al4V
,”
Surf. Coat. Technol.
,
429
, p.
127976
.
44.
Masoudi
,
S.
,
Amini
,
S.
,
Saeidi
,
E.
, and
Eslami-Chalander
,
H.
,
2015
, “
Effect of Machining-Induced Residual Stress on the Distortion of Thin-Walled Parts
,”
Int. J. Adv. Manuf. Technol.
,
76
(
1–4
), pp.
597
608
.
45.
Yao
,
C. F.
,
Zhang
,
J. Y.
,
Cui
,
M. C.
,
Tan
,
L.
, and
Shen
,
X. H.
,
2020
, “
Machining Deformation Prediction of Large Fan Blades Based on Loading Uneven Residual Stress
,”
Int. J. Adv. Manuf. Technol.
,
107
(
9–10
), pp.
4345
4356
.
46.
Liu
,
C. R.
, and
Barash
,
M. M.
,
1982
, “
Variables Governing Patterns of Mechanical Residual-Stress in a Machined Surface
,”
ASME J. Eng. Ind.
,
104
(
3
), pp.
257
264
.
47.
Peral
,
D.
,
de Vicente
,
J.
,
Porro
,
J. A.
, and
Ocana
,
J. L.
,
2017
, “
Uncertainty Analysis for Non-Uniform Residual Stresses Determined by the Hole Drilling Strain Gauge Method
,”
Measurement
,
97
, pp.
51
63
.
48.
Huang
,
K.
, and
Yang
,
W. Y.
,
2016
, “
Analytical Modeling of Residual Stress Formation in Workpiece Material Due to Cutting
,”
Int. J. Mech. Sci.
,
114
, pp.
21
34
.
49.
Sun
,
H.
,
Peng
,
F. Y.
,
Zhao
,
S. Q.
,
Zhou
,
L.
,
Yan
,
R.
, and
Huang
,
H. Z.
,
2022
, “
Uncertainty Calibration and Quantification of Surrogate Model for Estimating the Machining Distortion of Thin-Walled Parts
,”
Int. J. Adv. Manuf. Technol.
,
120
(
1–2
), pp.
719
741
.
50.
Nespor
,
D.
,
Denkena
,
B.
,
Grove
,
T.
, and
Boss
,
V.
,
2015
, “
Differences and Similarities Between the Induced Residual Stresses After Ball End Milling and Orthogonal Cutting of Ti-6Al-4 V
,”
J. Mater. Process. Technol.
,
226
, pp.
15
24
.
51.
Zong
,
W. J.
,
Sun
,
T.
,
Li
,
D.
,
Cheng
,
K.
, and
Liang
,
Y. C.
,
2006
, “
FEM Optimization of Tool Geometry Based on the Machined Near Surface's Residual Stresses Generated in Diamond Turning
,”
J. Mater. Process. Technol.
,
180
(
1–3
), pp.
271
278
.
You do not currently have access to this content.