Abstract

A cryo-system-assisted extrusion three-dimensional printing technique has been developed to fabricate Shape Memory Polymer Epoxy (SMPE) thermoset into a near-net shape. With a unique cryogenic sprayer-assisted printing system, it is possible to 3D print “pure” thermoset polymer, otherwise limited to thermoplastic or highly functionalized co-polymeric thermoset systems. The temperature was maintained below 10 °C to immobilize the polymeric chain at the atomic level. Nanoplatelet (GNP) reinforced SMPE ink was synthesized to be compatible with cryo-assisted extrusion 3D printing of shape memory composites. The addition of a mere 0.1 wt% GNP exhibited 15% faster shape recovery due to improved thermal conductivity, evidence of a strong interface between GNP and the polymer matrix. Also, GNP addition imparted a 30% improvement in the ultimate tensile strength and a 17% increase in 3D-printed composites’ elastic modulus. Mechanical testing showed that the addition of 0.1 wt% GNP in SMPE increased the composite's storage modulus by 365% and loss tangent by 66% compared to pure 3D-printed SMPE, indicating enhanced damping characteristics. This study is the first to demonstrate a non-existent 3D printing technology for “pure thermoset” polymers with and without conductive graphene that has the potential to develop an energy-efficient actuation system, passive thermal sensors, and self-deployable communication system structures.

References

1.
Ge
,
Q.
,
Sakhaei
,
A. H.
,
Lee
,
H.
,
Dunn
,
C. K.
,
Fang
,
N. X.
, and
Dunn
,
M. L.
,
2016
, “
Multimaterial 4D Printing With Tailorable Shape Memory Polymers
,”
Sci. Rep.
,
6
(
1
), p.
31110
.
2.
Lendlein
,
A.
, and
Kelch
,
S.
,
2005
, “
Shape-Memory Polymers as Stimuli-Sensitive Implant Materials
,”
Clin. Hemorheol. Microcirc.
,
32
(
2
), pp.
105
116
.
3.
Wang
,
Q.
,
Gossweiler
,
G. R.
,
Craig
,
S. L.
, and
Zhao
,
X. H.
,
2014
, “
Cephalopod-Inspired Design of Electro-Mechano-Chemically Responsive Elastomers for On-demand Fluorescent Patterning
,”
Nat. Commun.
,
5
(
1
), p.
5899
.
4.
Yang
,
Y.
,
Chen
,
Y.
,
Wei
,
Y.
, and
Li
,
Y.
,
2016
, “
3D Printing of Shape Memory Polymer for Functional Part Fabrication
,”
Int. J. Adv. Manuf. Technol.
,
84
(
9–12
), pp.
2079
2095
.
5.
Bustillos
,
J.
,
Montero-Zambrano
,
D.
,
Loganathan
,
A.
,
Boesl
,
B.
, and
Agarwal
,
A.
,
2019
, “
Stereolithography-Based 3D Printed Photosensitive Polymer/Boron Nitride Nanoplatelets Composites
,”
Polym. Compos.
,
40
(
1
), pp.
379
388
.
6.
Lendlein
,
A.
, and
Kelch
,
S.
,
2002
, “
Shape-Memory Polymers
,”
Angew. Chemie
,
41
(
12
), pp.
2034
2057
.
7.
Lendlein
,
A.
,
Jiang
,
H.
,
Jünger
,
O.
, and
Langer
,
R.
,
2005
, “
Light-Induced Shape-Memory Polymers
,”
Nature
,
434
(
7035
), pp.
879
882
.
8.
Bai
,
T.
,
Han
,
Y.
,
Zhang
,
P.
,
Wang
,
W.
, and
Liu
,
W.
,
2012
, “
Zinc Ion-Triggered Two-Way Macro-/Microscopic Shape Changing and Memory Effects in High Strength Hydrogels With Pre-programmed Unilateral Patterned Surfaces
,”
Soft Matter
,
8
(
25
), pp.
6846
6856
.
9.
Schmidt
,
A. M.
,
2006
, “
Electromagnetic Activation of Shape Memory Polymer Networks Containing Magnetic Nanoparticles
,”
Macromol. Rapid Commun.
,
27
(
14
), pp.
1168
1172
.
10.
Yu
,
Z.
,
Zhang
,
Q.
,
Li
,
L.
,
Chen
,
Q.
,
Niu
,
X.
,
Liu
,
J.
, and
Pei
,
Q.
,
2011
, “
Highly Flexible Silver Nanowire Electrodes for Shape-Memory Polymer Light-Emitting Diodes
,”
Adv. Mater.
,
23
(
5
), pp.
664
668
.
11.
Kratz
,
K.
,
Voigt
,
U.
, and
Lendlein
,
A.
,
2012
, “
Temperature-Memory Effect of Co-polyesterurethanes and Their Application Potential in Minimally Invasive Medical Technologies
,”
Adv. Funct. Mater.
,
22
(
14
), pp.
3057
3065
.
12.
Ge
,
Q.
,
Dunn
,
C. K.
,
Qi
,
H. J.
, and
Dunn
,
M. L.
,
2014
, “
Active Origami by 4D Printing
,”
Smart Mater. Struct.
,
23
(
9
), p.
094007
.
13.
Mao
,
Y.
,
Yu
,
K.
,
Isakov
,
M. S.
,
Wu
,
J.
,
Dunn
,
M. L.
, and
Qi
,
H. J.
,
2016
, “
Sequential Self-Folding Structures by 3D Printed Digital Shape Memory Polymers
,”
Sci. Rep.
,
5
(
1
), p.
13616
.
14.
Raasch
,
J.
,
Ivey
,
M.
,
Aldrich
,
D.
,
Nobes
,
D. S.
, and
Ayranci
,
C.
,
2015
, “
Characterization of Polyurethane Shape Memory Polymer Processed by Material Extrusion Additive Manufacturing
,”
Addit. Manuf.
,
8
, pp.
132
141
.
15.
Deng
,
X.
,
Zeng
,
Z.
,
Peng
,
B.
,
Yan
,
S.
, and
Ke
,
W.
,
2018
, “
Mechanical Properties Optimization of Poly-Ether-Ether-Ketone via Fused Deposition Modeling
,”
Materials (Basel)
,
11
(
2
), p.
216
.
16.
Huang
,
J
, and
Wu
,
P
,
2021
, “
Controlled Assembly of Luminescent Lanthanide-Organic Frameworks via Post-Treatment of 3D-Printed Objects
,”
Nano Micro Lettera
,
13
(
1
), pp.
1
14
.
17.
Zhang
,
X.
,
Jia
,
X.
, and
Wang
,
X.
,
2020
,
Direct Ink Writing of Polymers and Their Composites, and Related Applications
,
Elsevier Inc.
,
Sawston, UK
.
18.
Garcia
,
C. A.
,
Kim
,
H.
,
Duarte
,
M. F.
,
Chavez
,
L.
,
Castaneda
,
M.
,
Tseng
,
B.
, and
Lin
,
Y.
,
2019
, “
Characterization of Shape Memory Polymer Parts Fabricated Using Material Extrusion 3D Printing Technique
,”
Rapid Prototyp. J.
,
25
(
2
).
19.
Chen
,
S.
,
Zhang
,
Q.
, and
Feng
,
J.
,
2017
, “
3D Printing of Tunable Shape Memory Polymer Blends
,”
J. Mater. Chem. C
,
5
(
33
), pp.
8361
8365
.
20.
Zheng
,
N.
,
Fang
,
G.
,
Cao
,
Z.
,
Zhao
,
Q.
, and
Xie
,
T.
,
2015
, “
High Strain Epoxy Shape Memory Polymer
,”
Polym. Chem.
,
6
(
16
), pp.
3046
3053
.
21.
Munir
,
N.
,
Larsen
,
R. S.
, and
Callanan
,
A.
,
2018
, “
Fabrication of 3D Cryo-Printed Scaffolds Using Low-Temperature Deposition Manufacturing for Cartilage Tissue Engineering
,”
Bioprinting
,
10
, p.
1
.
22.
tan
,
Z.
,
Parisi
,
C.
,
Silvio
,
L. D.
,
Dini
,
D.
, and
Forte
,
A. E.
,
2017
, “
Cryogenic 3D Printing of Super Soft Hydrogels
,”
Sci. Rep.
,
7
(
1
), p.
16293
.
23.
Adamkiewicz
,
M.
, and
Rubinsky
,
B.
,
2015
, “
Cryogenic 3D Printing for Tissue Engineering
,”
Cryobiology
,
71
(
3
), pp.
518
521
.
24.
Stolz
,
B.
,
Mader
,
M.
,
Volk
,
L.
,
Steinberg
,
T.
, and
Mulhaupt
,
R.
,
2021
, “
Cryo-3D Printing of Hierarchically Porous Polyhydroxymethylene Scaffolds for Hard Tissue Regeneration
,”
Macromol. Mater. Eng.
,
306
(
1
), p.
2000541
.
25.
Wang
,
C.
,
Zhao
,
Q.
, and
Wang
,
M.
,
2017
, “
Cryogenic 3D Printing for Producing Hierarchical Porous and rhBMP-2-Loaded Ca-P/PLLA Nanocomposite Scaffolds for Bone Tissue Engineering
,”
Biofabrication
,
9
(
2
), p.
025031
.
26.
Castilho
,
M.
,
Dia
,
M.
,
Gbureck
,
U.
,
Groll
,
J.
,
Fernandes
,
P.
,
Pires
,
I.
,
Gouveia
,
B.
,
Rodrigues
,
J.
, and
Vorndran
,
E.
,
2013
, “
Fabrication of Computationally Designed Scaffolds by Low Temperature 3D Printing
,”
Biofabrication
,
5
(
3
), p.
035012
.
27.
Habibovic
,
P.
,
Gbureck
,
U.
,
Doillon
,
C. J.
,
Bassett
,
D. C.
,
Blitterswijk
,
C.
, and
Barralet
,
J.
,
2008
, “
Osteoconduction and Osteoinduction of Low-Temperature 3D Printed Bioceramic Implants
,”
Biomaterials
,
29
(
7
), pp.
944
953
.
28.
Lee
,
H.
,
Yang
,
G. H.
,
Kim
,
M.
,
Lee
,
J.
,
Huh
,
J. T.
, and
Kim
,
G. H.
,
2018
, “
Fabrication of Micro/Nanoporous Collagen/ECM/Silk-Fibroin Biocomposite Scaffolds Using a Low Temperature 3D Printing Process for Bone Tissue Regeneration
,”
Mater. Sci. Eng. C
,
84
, pp.
140
147
.
29.
Pande
,
K. N.
,
Peshwe
,
D. R.
, and
Kumar
,
A.
,
2012
, “
Effect of the Cryogenic Treatment on Polyamide and Optimization of Its Parameters for the Enhancement of Wear Performance
,”
Trans. Indian Inst. Met.
,
65
(
3
), pp.
313
319
.
30.
Xie
,
T.
, and
Rousseau
,
I. A.
,
2009
, “
Facile Tailoring of Thermal Transition Temperatures of Epoxy Shape Memory Polymers
,”
Polymer
,
50
(
8
), pp.
1852
1856
.
31.
Abdollahi
,
H.
,
Salimi
,
A.
, and
Barikani
,
M.
,
2016
, “
Systematic Investigation of Mechanical Properties and Fracture Toughness of Epoxy Networks: Role of the Polyetheramine Structural Parameters
,”
Appl. Polym. Sci.
,
136
(
9
), p.
47121
.
32.
Idowu
,
A.
,
2020
,
3D Graphene Foam Reinforced Epoxy Composites, FIU Digital Commons
, https://digitalcommons.fiu.edu/etd.
33.
Bustillos
,
J.
,
Zhang
,
C.
,
Boesl
,
B.
, and
Agarwal
,
A.
,
2018
, “
Three-Dimensional Graphene Foam–Polymer Composite With Superior Deicing Efficiency and Strength
,”
ACS Appl. Mater. Interfaces
,
10
(
5
), pp.
5022
5029
.
34.
Idowu
,
A.
,
Boesl
,
B.
, and
Agarwal
,
A.
,
2018
, “
3D Graphene Foam-Reinforced Polymer Composites—A Review
,”
Carbon.
,
135
, pp.
52
71
.
35.
Wang
,
F.
,
Drzal
,
L.
,
Qin
,
Y.
, and
Huang
,
Z.
,
2016
, “
Enhancement of Fracture Toughness, Mechanical and Thermal Properties of Rubber/Epoxy Composites by Incorporation of Graphene Nanoplatelets
,”
Compos. Part A Appl. Sci.
,
87
, pp.
10
22
.
36.
Embrey
,
L.
,
Nautiyal
,
P.
,
Loganathan
,
A.
,
Idowu
,
A.
,
Boesl
,
B.
, and
Agarwal
,
A.
,
2018
, “
Three-Dimensional Graphene Foam Induces Multifunctionality in Epoxy Nanocomposites by Simultaneous Improvement in Mechanical, Thermal, and Electrical Properties
,”
ACS Appl. Mater. Interfaces
,
9
(
45
), pp.
39717
39727
.
37.
Yu
,
Z.
,
Wang
,
Z.
,
Li
,
H.
,
Teng
,
J.
, and
Xu
,
L.
,
2019
, “
Shape Memory Epoxy Polymer (SMEP) Composite Mechanical Properties Enhanced by Introducing Graphene Oxide (GO) Into the Matrix
,”
Materials
,
12
(
7
), p.
1107
.
38.
Papageorgiou
,
D. G.
,
Kinloch
,
I. A.
, and
Young
,
R. J.
, “
Mechanical Properties of Graphene and Graphene-Based Nanocomposites
,”
Prog. Mater. Sci.
,
90
, pp.
75
127
.
39.
Menard
,
K.
, and
Menard
,
N.
,
2008
,
Dynamic Mechanical Analysis
,
Taylor and Francis Group
,
Oxfordshire, UK
.
40.
Aruniit
,
A.
,
Jaan
,
K. E. R. S.
,
Krumme
,
A.
,
Poltimäe
,
T.
, and
Kaspar
,
T. A. L. L.
,
2012
, “
Preliminary Study of the Influence of Post Curing Parameters to the Particle Reinforced Composite's Mechanical and Physical Properties
,”
Mater. Sci.
,
18
(
3
.
41.
Pan
,
D.
,
Wang
,
C.
,
Wang
,
T.
, and
Yao
,
Y.
,
2017
, “
Graphene Foam: Uniaxial Tension Behavior and Fracture Mode Based on a Mesoscopic Model
,”
ACS Nano.
,
11
(
9
), pp.
8988
8997
.
You do not currently have access to this content.