Abstract

The present experimental endeavor aims to develop and study the characteristics of a novel ground tire rubber media (GTRM) through rheological, thermal, and mechanical characterizations. Thermogravimetric analysis reveals the presence of natural and styrene butadiene rubber in ground tire rubber (GTR) and confirms the thermal stability of developed GTRM under the working temperature of the abrasive flow finishing (AFF) process. Investigation reveals that incorporating GTR into media improves AFF performance up to 50 phr, after which it degrades due to poor self-deforming characteristics and abrasive holding capacity at higher GTR fractions. It has also been observed that the percentage of oil and the size of the GTR particles are significant media parameters that govern the GTRM property and thus influence its performance. GTRM with bigger GTR produces deep abrasive cut marks and nonuniform shearing. A comprehensive study reveals that GTRM containing 50 phr GTR (80 mesh), 10% oil, and 60% SiC (220 mesh) results in the highest percentage improvement in surface roughness (% ΔRa) of 44% on flat geometry. The same media, but with coarser SiC (80 mesh), was also used to polish a micro-grooved workpiece. Results show 64% improvement in Ra for the top surface and 58% for the bottom, respectively. Both surfaces still contain a few pits and unevenness; however, the surfaces and top edge of the groove became smooth after AFF.

References

1.
Sambharia
,
J.
, and
Mali
,
H. S.
,
2019
, “
Recent Developments in Abrasive Flow Finishing Process: A Review of Current Research and Future Prospects
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
,
233
(
2
), pp.
388
399
.
2.
Rhoades
,
L.
,
1991
, “
Abrasive Flow Machining: A Case Study
,”
J. Mater. Process. Technol.
,
28
(
1–2
), pp.
107
116
.
3.
Loveless
,
T. R.
,
Williams
,
R. E.
, and
Rajurkar
,
K. P.
,
1994
, “
A Study of the Effects of Abrasive-Flow Finishing on Various Machined Surfaces
,”
J. Mater. Process. Tech.
,
47
(
1–2
), pp.
133
151
.
4.
Wang
,
A.-C.
,
Tsai
,
L.
,
Liang
,
K.-Z.
,
Liu
,
C.-H.
, and
Weng
,
S.-H.
,
2009
, “
Uniform Surface Polished Method of Complex Holes in Abrasive Flow Machining
,”
Trans. Nonferrous Met. Soc. Chin.
,
19
(
S1
), pp.
s250
s257
.
5.
Raju
,
H. P.
,
Narayanasamy
,
K.
,
Srinivasa
,
Y. G.
, and
Krishnamurthy
,
R.
,
2005
, “
Characteristics of Extrude Honed SG Iron Internal Primitives
,”
J. Mater. Process. Technol.
,
166
(
3
), pp.
455
464
.
6.
Jain
,
V. K.
,
Ranganatha
,
C.
, and
Muralidhar
,
K.
,
2001
, “
Evaluation of Rheological Properties of Medium for AFM Process
,”
Mach. Sci. Technol.
,
5
(
2
), pp.
151
170
.
7.
Kar
,
K. K.
,
Ravikumar
,
N. L.
,
Tailor
,
P. B.
,
Ramkumar
,
J.
, and
Sathiyamoorthy
,
D.
,
2009
, “
Preferential Media for Abrasive Flow Machining
,”
ASME J. Manuf. Sci. Eng.
,
131
(
1
), p.
011009
.
8.
Kar
,
K. K.
,
Ravikumar
,
N. L.
,
Tailor
,
P. B.
,
Ramkumar
,
J.
, and
Sathiyamoorthy
,
D.
,
2009
, “
Performance Evaluation and Rheological Characterization of Newly Developed Butyl Rubber Based Media for Abrasive Flow Machining Process
,”
J. Mater. Process. Technol.
,
209
(
4
), pp.
2212
2221
.
9.
Yan
,
B.-H.
,
Tzeng
,
H.-J.
,
Yuan Huang
,
F.
,
Lin
,
Y.-C.
, and
Chow
,
H.-M.
,
2007
, “
Finishing Effects of Spiral Polishing Method on Micro Lapping Surface
,”
Int. J. Mach. Tools Manuf.
,
47
(
6
), pp.
920
926
.
10.
Wang
,
A. C.
, and
Weng
,
S. H.
,
2007
, “
Developing the Polymer Abrasive Gels in AFM Processs
,”
J. Mater. Process. Technol.
,
192–193
, pp.
486
490
.
11.
Sankar
,
M. R.
,
Jain
,
V. K.
,
Ramkumar
,
J.
, and
Joshi
,
Y. M.
,
2011
, “
Rheological Characterization of Styrene-Butadiene Based Medium and Its Finishing Performance Using Rotational Abrasive Flow Finishing Process
,”
Int. J. Mach. Tools Manuf.
,
51
(
12
), pp.
947
957
.
12.
Jain
,
R. K.
, and
Jain
,
V.
,
2001
, “
Specific Energy and Temperature Determination in Abrasive Flow Machining Process
,”
Int. J. Mach. Tools Manuf.
,
41
(
12
), pp.
1689
1704
.
13.
Fletcher
,
A. J.
, and
Fioravanti
,
A.
,
1996
, “
Polishing and Honing Processes: An Investigation of the Thermal Properties of Mixtures of Polyborosiloxane and Silicon Carbide Abrasive
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
210
(
3
), pp.
255
265
.
14.
Davies
,
P. J.
, and
Fletcher
,
A. J.
,
1995
, “
The Assessment of the Rheological Characteristics of Various Polyborosiloxane/Grit Mixtures as Utilized in the Abrasive Flow Machining Process
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
209
(
6
), pp.
409
418
.
15.
Marcilla
,
A.
, and
Beltrán
,
M.
,
2017
, “Mechanisms of Plasticizers Action,”
Handbook of Plasticizers
,
Elsevier
,
New York
, pp.
119
134
.
16.
De
,
D.
,
Panda
,
P. K.
,
Roy
,
M.
, and
Bhunia
,
S.
,
2013
, “
Reinforcing Effect of Reclaim Rubber on Natural Rubber/Polybutadiene Rubber Blends
,”
Mater. Des.
,
46
, pp.
142
150
.
17.
Nabil
,
H.
,
Ismail
,
H.
, and
Azura
,
A. R.
,
2013
, “
Compounding, Mechanical and Morphological Properties of Carbon-Black-Filled Natural Rubber/Recycled Ethylene-Propylene-Diene-Monomer (NR/R-EPDM) Blends
,”
Polym. Test.
,
32
(
2
), pp.
385
393
.
18.
Aurich
,
J. C.
,
Kirsch
,
B.
,
Setti
,
D.
,
Axinte
,
D.
,
Beaucamp
,
A.
,
Butler-Smith
,
P.
, and
Yamaguchi
,
H.
,
2019
, “
Abrasive Processes for Micro Parts and Structures
,”
CIRP Ann.
,
68
(
2
), pp.
653
676
.
19.
Yin
,
L.
,
Ramesh
,
K.
,
Wan
,
S.
,
Liu
,
X. D.
,
Huang
,
H.
, and
Liu
,
Y. C.
,
2004
, “
Abrasive Flow Polishing of Micro Bores
,”
Mater. Manuf. Process.
,
19
(
2
), pp.
187
207
.
20.
Guo
,
J.
,
Liu
,
K.
,
Wang
,
Z.
, and
Tnay
,
G. L.
,
2017
, “
Magnetic Field-Assisted Finishing of a Mold Insert With Curved Microstructures for Injection Molding of Microfluidic Chips
,”
Tribol. Int.
,
114
, pp.
306
314
.
21.
Chen
,
F.
,
Hao
,
S.
,
Miao
,
X.
,
Yin
,
S.
, and
Huang
,
S.
,
2018
, “
Numerical and Experimental Study on Low-Pressure Abrasive Flow Polishing of Rectangular Microgroove
,”
Powder Technol.
,
327
, pp.
215
222
.
22.
Guo
,
J.
,
Kum
,
C. W.
,
Au
,
K. H.
,
Tan
,
Z. E.
,
Wu
,
H.
, and
Liu
,
K.
,
2016
, “
New Vibration-Assisted Magnetic Abrasive Polishing (VAMAP) Method for Microstructured Surface Finishing
,”
Opt. Express
,
24
(
12
), p.
13542
.
23.
Surace
,
R.
,
Sorgato
,
M.
,
Bellantone
,
V.
,
Modica
,
F.
,
Lucchetta
,
G.
, and
Fassi
,
I.
,
2019
, “
Effect of Cavity Surface Roughness and Wettability on the Filling Flow in Micro Injection Molding
,”
J. Manuf. Process.
,
43
(
Part A
), pp.
105
111
.
24.
Jung
,
D.
,
Wang
,
W. L.
,
Knafl
,
A.
,
Jacobs
,
T. J.
,
Hu
,
S. J.
, and
Assanis
,
D. N.
,
2008
, “
Experimental Investigation of Abrasive Flow Machining Effects on Injector Nozzle Geometries, Engine Performance, and Emissions in a Di Diesel Engine
,”
Int. J. Automot. Technol.
,
9
(
1
), pp.
9
15
.
25.
Macosko
,
C. W.
,
1994
,
Rheology Principles, Measurements, and Applications
,
Wiley-VCH, Inc.
,
New York
.
26.
Sombatsompop
,
N.
, and
Kumnuantip
,
C.
,
2002
, “
Rheology, Cure Characteristics, Physical and Mechanical Properties of Tire Tread Reclaimed Rubber/Natural Rubber Compounds
,”
J. Appl. Polym. Sci.
,
87
(
10
), pp.
1723
1731
.
27.
Sombatsompop
,
N.
,
1999
, “
Dynamic Mechanical Properties of SBR and EPDM Vulcanisates Filled With Cryogenically Pulverized Flexible Polyurethane Foam Particles
,”
J. Appl. Polym. Sci.
,
74
(
5
), pp.
1129
1139
.
28.
Jain
,
V. K.
, and
Adsul
,
S. G.
,
2000
, “
Experimental Investigations Into Abrasive Flow Machining (AFM)
,”
Int. J. Mach. Tools Manuf.
,
40
(
7
), pp.
1003
1021
.
29.
Bahadur
,
S.
, and
Badruddin
,
R.
,
1990
, “
Erodent Particle Characterization and the Effect of Particle Size and Shape on Erosion
,”
Wear
,
138
(
1–2
), pp.
189
208
.
30.
Fang
,
L.
,
Zhao
,
J.
,
Sun
,
K.
,
Zheng
,
D.
, and
Ma
,
D.
,
2009
, “
Temperature as Sensitive Monitor for Efficiency of Work in Abrasive Flow Machining
,”
Wear
,
266
(
7–8
), pp.
678
687
.
31.
Ansari
,
I. A.
,
Sharma
,
D.
,
Kar
,
K. K.
, and
Ramkumar
,
J.
,
2021
, “
Investigation on Precision Finishing of Helical Gears Using Newly Developed Silicon Carbide Mixed Styrene Butadiene Media and Abrasive Flow Finishing Process
,”
Curr. Nanomater.
,
6
(
2
), pp.
1
11
.
32.
Ramarad
,
S.
,
Khalid
,
M.
,
Ratnam
,
C. T.
,
Chuah
,
A. L.
, and
Rashmi
,
W.
,
2015
, “
Waste Tire Rubber in Polymer Blends: A Review on the Evolution, Properties and Future
,”
Prog. Mater. Sci.
,
72
, pp.
100
140
.
33.
Colom
,
X.
,
Cañavate
,
J.
,
Carrillo
,
F.
, and
Suñol
,
J. J.
,
2009
, “
Effect of the Particle Size and Acid Pretreatments on Compatibility and Properties of Recycled HDPE Plastic Bottles Filled With Ground Tyre Powder
,”
J. Appl. Polym. Sci.
,
112
(
4
), pp.
1882
1890
.
34.
Karabork
,
F.
,
Pehlivan
,
E.
, and
Akdemir
,
A.
,
2014
, “
Characterization of Styrene Butadiene Rubber and Microwave Devulcanized Ground Tire Rubber Composites
,”
J. Polym. Eng.
,
34
(
6
), pp.
543
554
.
35.
Han
,
S.-C.
, and
Han
,
M.-H.
,
2002
, “
Fracture Behavior of NR and SBR Vulcanizates Filled With Ground Rubber Having Uniform Particle Size
,”
J. Appl. Polym. Sci.
,
85
(
12
), pp.
2491
2500
.
36.
Gupta
,
G. A.
,
Ansari
,
I. A.
,
Ramkumar
,
J.
, and
Kar
,
K. K.
,
2021
, “
Rheological Characterization of Newly Developed Fly-Ash Mixed Polymeric Media and Its Finishing Performance Through Abrasive Flow Machining
,”
Clean. Eng. Technol.
,
2
, p.
100085
.
37.
Seidelt
,
S.
,
Müller-Hagedorn
,
M.
, and
Bockhorn
,
H.
,
2006
, “
Description of Tire Pyrolysis by Thermal Degradation Behaviour of Main Components
,”
J. Anal. Appl. Pyrolysis
,
75
(
1
), pp.
11
18
.
You do not currently have access to this content.