Abstract

We show how a theoretical framework developed for modeling nonuniform growth can model the shot peen forming process. Shot peen forming consists in bombarding a metal panel with multiple millimeter-sized shots that induce local bending of the panel. When applied to different areas of the panel, peen forming generates compound curvature profiles starting from a flat state. We present a theoretical approach and its practical realization for simulating peen forming numerically. To achieve this, we represent the panel undergoing peen forming as a bilayer plate, and we apply a geometry-based theory of non-Euclidean plates to describe its reconfiguration. Our programming code based on this approach solves two types of problems: it simulates the effect of a predefined treatment (the forward problem) and it finds the optimal treatment to achieve a predefined target shape (the inverse problem). Both problems admit using multiple peening regimes simultaneously. The algorithm was tested numerically on 200 randomly generated test cases.

References

1.
Ramati
,
S.
,
Kennerknecht
,
S.
, and
Levasseur
,
G.
,
1999
, “
Single Piece Wing Skin Utilization Via Advanced Peen Forming Technologies
,”
Proceedings of the 7th International Conference on Shot Peening (ICSP7)
,
Warsaw, Poland
,
Sept. 28–30
.
2.
de los Rios
,
E.
,
Walley
,
A.
,
Milan
,
M.
, and
Hammersley
,
G.
,
1995
, “
Fatigue Crack Initiation and Propagation on Shot-Peened Surfaces in A316 Stainless Steel
,”
Int. J. Fatigue
,
17
(
7
), pp.
493
499
.
3.
Faucheux
,
P. A.
,
2019
, “
Simulating Shot Peen Forming With Eigenstrains
,”
Ph.d. dissertation
,
Polytechnique Montreal, Montreal
,
December
.
4.
Chen
,
Z.
,
Yang
,
F.
, and
Meguid
,
S.
,
2014
, “
Realistic Finite Element Simulations of Arc-Height Development in Shot-Peened Almen Strips
,”
J. Eng. Mater. Technol.
,
136
(
4
), p.
041002
.
5.
Mura
,
T.
,
1987
,
Micromechanics of Defects in Solids
,
Springer Science & Business Media
,
Dordrecht
, p.
21
.
6.
Korsunsky
,
A. M.
,
2005
, “
The Modelling of Residual Stresses Due to Surface Peening Using Eigenstrain Distributions
,”
J. Strain Anal. Eng. Des.
,
40
(
8
), pp.
817
824
.
7.
Faucheux
,
P. A.
,
Gosselin
,
F. P.
, and
Lévesque
,
M.
,
2018
, “
Simulating Shot Peen Forming With Eigenstrains
,”
J. Mater. Process. Technol.
,
254
, pp.
135
144
.
8.
Siguerdidjane
,
W.
,
Khameneifar
,
F.
, and
Gosselin
,
F. P.
,
2020
, “
Efficient Planning of Peen-Forming Patterns Via Artificial Neural Networks
,”
Manuf. Lett.
,
25
, pp.
70
74
.
9.
Pajot
,
J. M.
,
Maute
,
K.
,
Zhang
,
Y.
, and
Dunn
,
M. L.
,
2006
, “
Design of Patterned Multilayer Films With Eigenstrains by Topology Optimization
,”
Int. J. Solids Struct.
,
43
(
6
), pp.
1832
1853
.
10.
Miao
,
H. Y.
,
Lévesque
,
M.
, and
Gosselin
,
F. P.
,
2022
, “
Shot Peen Forming Pattern Optimization to Achieve Cylindrical and Saddle Target Shapes: The Inverse Problem
,”
CIRP J. Manuf. Sci. Technol.
,
36
, pp.
67
77
.
11.
Luo
,
M.
,
Hu
,
Y.
,
Hu
,
L.
, and
Yao
,
Z.
,
2020
, “
Efficient Process Planning of Laser Peen Forming for Complex Shaping With Distributed Eigen-Moment
,”
J. Mater. Process. Technol.
,
279
, p.
116588
.
12.
Efrati
,
E.
,
Sharon
,
E.
, and
Kupferman
,
R.
,
2009
, “
Elastic Theory of Unconstrained Non-Euclidean Plates
,”
J. Mech. Phys. Solids
,
57
(
4
), pp.
762
775
.
13.
Efrati
,
E.
,
Sharon
,
E.
, and
Kupferman
,
R.
,
2013
, “
The Metric Description of Elasticity in Residually Stressed Soft Materials
,”
Soft Matter
,
9
(
34
), pp.
8187
8197
.
14.
Pezzulla
,
M.
,
Shillig
,
S. A.
,
Nardinocchi
,
P.
, and
Holmes
,
D. P.
,
2015
, “
Morphing of Geometric Composites Via Residual Swelling
,”
Soft Matter
,
11
(
29
), pp.
5812
5820
.
15.
Pezzulla
,
M.
,
Smith
,
G. P.
,
Nardinocchi
,
P.
, and
Holmes
,
D. P.
,
2016
, “
Geometry and Mechanics of Thin Growing Bilayers
,”
Soft Matter
,
12
(
19
), pp.
4435
4442
.
16.
Chen
,
H.-Y.
,
Sastry
,
A.
,
van Rees
,
W. M.
, and
Vouga
,
E.
,
2018
, “
Physical Simulation of Environmentally Induced Thin Shell Deformation
,”
ACM Trans. Graph.
,
37
(
4
), pp.
1
13
.
17.
van Rees
,
W. M.
,
Matsumoto
,
E. A.
,
Gladman
,
A. S.
,
Lewis
,
J. A.
, and
Mahadevan
,
L.
,
2018
, “
Mechanics of Biomimetic 4D Printed Structures
,”
Soft Matter
,
14
(
43
), pp.
8771
8779
.
18.
Aharoni
,
H.
,
Xia
,
Y.
,
Zhang
,
X.
,
Kamien
,
R. D.
, and
Yang
,
S.
,
2018
, “
Universal Inverse Design of Surfaces With Thin Nematic Elastomer Sheets
,”
Proc. Natl. Acad. Sci. U.S.A.
,
115
(
28
), pp.
7206
7211
.
19.
van Rees
,
W. M.
,
Vouga
,
E.
, and
Mahadevan
,
L.
,
2017
, “
Growth Patterns for Shape-Shifting Elastic Bilayers
,”
Proc. Natl. Acad. Sci. U.S.A.
,
114
(
44
), pp.
11597
11602
.
20.
Klotz
,
T.
,
Delbergue
,
D.
,
Bocher
,
P.
,
Lévesque
,
M.
, and
Brochu
,
M.
,
2018
, “
Surface Characteristics and Fatigue Behavior of Shot Peened Inconel 718
,”
Int. J. Fatigue
,
110
, pp.
10
21
.
21.
Rossini
,
N.
,
Dassisti
,
M.
,
Benyounis
,
K.
, and
Olabi
,
A.-G.
,
2012
, “
Methods of Measuring Residual Stresses in Components
,”
Mater. Des.
,
35
, pp.
572
588
.
22.
Flavenot
,
J. F.
, and
Niku-Lari
,
A.
,
1977
, “
La mesure des contraintes résiduelles. Méthode de la flèche. Méthode de la source des contraintes. Application au grenaillage de précontrainte et à d’autres traitements superficiels
,” Tech. Rep. 31, CETIM, Senlis, France, September.
23.
Prime
,
M. B.
, and
Hill
,
M. R.
,
2002
, “
Residual Stress, Stress Relief, and Inhomogeneity in Aluminum Plate
,”
Scr. Mater.
,
46
(
1
), pp.
77
82
.
24.
Korsunsky
,
A. M.
,
2006
, “
Residual Elastic Strain Due to Laser Shock Peening: Modelling by Eigenstrain Distribution
,”
J. Strain Anal. Eng. Des.
,
41
(
3
), pp.
195
204
.
25.
Ciarlet
,
P. G.
,
2005
, “
An Introduction to Differential Geometry With Applications to Elasticity
,”
J. Elast.
,
78
(
1
), pp.
1
215
.
26.
Spivak
,
M.
,
1975
,
A Comprehensive Introduction to Differential Geometry
, Vol. 3,
Publish or Perish
,
Boston, MA
.
27.
Weischedel
,
C.
,
Tuganov
,
A.
,
Hermansson
,
T.
,
Linn
,
J.
, and
Wardetzky
,
M.
,
2012
, “
Construction of Discrete Shell Models by Geometric Finite Differences
,” Fraunhofer ITWM, Kaiserslautern.
28.
Liu
,
D. C.
, and
Nocedal
,
J.
,
1989
, “
On the Limited Memory BFGS Method for Large Scale Optimization
,”
Math. Program.
,
45
(
1
), pp.
503
528
.
29.
Tamstorf
,
R.
, and
Grinspun
,
E.
,
2013
, “
Discrete Bending Forces and Their Jacobians
,”
Graph. Models
,
75
(
6
), pp.
362
370
.
30.
van Rees
,
W. M.
,
2018
, “
Code Accompanying the 2018 Soft Matter Paper “Mechanics of Biomimetic 4D Printed Structures
,” https://github.com/wimvanrees/growth_SM2018
31.
Besl
,
P.
, and
McKay
,
N. D.
,
1992
, “
A Method for Registration of 3-D Shapes
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
14
(
2
), pp.
239
256
.
32.
Faucheux
,
P. A.
,
Miao
,
H. Y.
,
Lévesque
,
M.
, and
Gosselin
,
F. P.
,
2022
, “
Peen Forming and Stress Peen Forming of Rectangular 2024-T3 Aluminium Sheets: Curvatures, Natural Curvatures and Residual Stresses
,”
Strain
,
58
(
2
), p.
e12405
.
33.
Lévy
,
B.
,
Petitjean
,
S.
,
Ray
,
N.
, and
Maillot
,
J.
,
2002
, “
Least Squares Conformal Maps for Automatic Texture Atlas Generation
,”
ACM Trans. Graph.
,
21
(
3
), pp.
362
371
.
You do not currently have access to this content.