Abstract

The influence of elongation on the strain inhomogeneity and shape change in twinning-induced plasticity steel rod is systematically investigated to understand the macroscopic shear band (MSB) formation mechanism and to decrease the strain inhomogeneity during the compression-type forming processes. Specimens fabricated by rod flat rolling with elongation (3D rod) and by plane compression without elongation (2D rod) are compared using both finite element analysis and experiment. Despite the similar final product shape, the 2D rod presents a lower effective strain at the surface region than the 3D rod, leading to a high strain inhomogeneity. The higher effective strain at the surface region of the 3D rod is mainly attributed to the elongation of the 3D rod during the rolling. In contrast, the 2D rod exhibits strong dead metal zones owing to the lack of elongation of the specimen. Therefore, the formation of MSBs or strain inhomogeneity of a specimen can be reduced by increasing the elongation of the specimens during the forming process. Both the contact width and lateral spread of the 3D rod are lower than those of the 2D rod because of the elongation of the 3D rod originating from the slip effect at the rod–roll interface during the rolling process. The small frictional effect at the rod and roll interface increased the elongation of the rod, leading to a decrease in the strain inhomogeneity and lateral spreading in the 3D rod.

References

1.
Hosford
,
W. F.
, and
Caddell
,
R. M.
,
2007
,
Metal Forming: Mechanics and Metallurgy
, 3rd ed.,
Cambridge University Press
,
New York
.
2.
Semiatin
,
S. L.
, and
Jonas
,
J. J.
,
1884
,
Formability and Workability of Metals: Plastic Instability and Flow Localization
,
American Society for Metals
,
Metals Park, OH
, pp.
43
119
.
3.
Paul
,
H.
,
Driver
,
J. H.
,
Tarasek
,
A.
,
Wajda
,
W.
, and
Miszczyk
,
M. M.
,
2015
, “
Mechanism of Macroscopic Shear Band Formation in Plane Strain Compressed Fine-Grained Aluminium
,”
Mater. Sci. Eng. A
,
642
, pp.
167
180
.
4.
Semiatin
,
S. L.
, and
Lahoti
,
G. D.
,
1982
, “
The Occurrence of Shear Bands in Isothermal, Hot Forging
,”
Metall. Mater. Trans. A
,
13
(
2
), pp.
275
288
.
5.
Lambiase
,
F.
, and
Ilio
,
A. D.
,
2012
, “
Deformation Inhomogeneity in Roll Drawing Process
,”
J. Manuf. Processes
,
14
(
3
), pp.
208
215
.
6.
Jia
,
N.
,
Eisenlohr
,
P.
,
Roters
,
F.
,
Raabe
,
D.
, and
Zhao
,
X.
,
2012
, “
Orientation Dependence of Shear Banding in Face-Centered-Cubic Single Crystals
,”
Acta Mater.
,
60
(
8
), pp.
3415
3434
.
7.
Cheng
,
L.
,
Xue
,
X.
,
Tang
,
B.
,
Liu
,
D.
,
Li
,
J.
,
Kou
,
H.
, and
Li
,
J.
,
2014
, “
Deformation Behavior of Hot-Rolled IN718 Superalloy Under Plane Strain Compression at Elevated Temperature
,”
Mater. Sci. Eng. A
,
606
, pp.
24
30
.
8.
Tang
,
B.
,
Xiang
,
L.
,
Cheng
,
L.
,
Liu
,
D.
,
Kou
,
H.
, and
Li
,
J.
,
2018
, “
The Formation and Evolution of Shear Bands in Plane Strain Compressed Nickel-Base Superalloy
,”
Metals
,
8
(
2
), p.
141
.
9.
Chun
,
Y. B.
, and
Davies
,
C. H. J.
,
2012
, “
Texture Effects on Development of Shear Bands in Rolled AZ31 Alloy
,”
Mater. Sci. Eng. A
,
556
, pp.
253
259
.
10.
Guo
,
X.
,
Deng
,
Y.
,
Zhang
,
Y.
,
Zhang
,
J.
, and
Zhang
,
X.
,
2017
, “
Microstructure and Microtexture Evolution of Shear Bands in Al–Cu Single Crystal During Asymmetric Rolling
,”
Mater. Charact.
,
128
, pp.
37
42
.
11.
Kazeminezhad
,
M.
, and
Karimi Taheri
,
A.
,
2008
, “
The Effect of 3D and 2D Deformations on Flattened Wires
,”
J. Mater. Process. Technol.
,
202
(
1–3
), pp.
553
558
.
12.
Parvizi
,
A.
,
Pasoodeh
,
B.
,
Abrinia
,
K.
, and
Akbari
,
H.
,
2015
, “
Analysis of Curvature and Width of the Contact Area in Asymmetrical Rolling of Wire
,”
J. Manuf. Processes
,
20
, pp.
245
249
.
13.
Massé
,
T.
,
Chastel
,
Y.
,
Montmitonnet
,
P.
,
Bobadilla
,
C.
,
Persem
,
N.
, and
Foissey
,
S.
,
2011
, “
Impact of Mechanical Anisotropy on the Geometry of Flat-Rolled Fully Pearlitic Steel Wires
,”
J. Mater. Process. Technol.
,
211
(
1
), pp.
103
112
.
14.
Li
,
J.
,
Li
,
Y.
,
Huang
,
C.
,
Suo
,
T.
, and
Wei
,
Q.
,
2017
, “
On Adiabatic Shear Localization in Nanostructured Face-Centered Cubic Alloys With Different Stacking Fault Energies
,”
Acta Mater.
,
141
, pp.
163
182
.
15.
Kang
,
M.
,
Park
,
J.
,
Sohn
,
S. S.
,
Kim
,
H.
,
Kim
,
K. H.
, and
Lee
,
S.
,
2015
, “
Adiabatic Shear Banding and Cracking Phenomena Occurring During Cold-Forging Simulation Tests of Plain Carbon Steel Wire Rods by Using a Split Hopkinson's Pressure bar
,”
Met. Mater. Int.
,
21
(
6
), pp.
991
999
.
16.
Deve
,
H. E.
, and
Asaro
,
R. J.
,
1989
, “
The Development of Plastic Failure Modes in Crystalline Materials: Shear Bands in FCC Polycrystals
,”
Metall. Trans. A
,
20
(
4
), pp.
579
593
.
17.
Hwang
,
J. K.
,
2020
, “
Deformation Behaviors of Flat Rolled Wire in Twinning-Induced Plasticity Steel
,”
Met. Mater. Int.
,
26
(
5
), pp.
603
616
.
18.
Hwang
,
J. K.
,
2020
, “
Enhanced Homogeneity of a Flat-Rolled Wire in Twinning-Induced Plasticity Steel Using the Pass Schedule Design
,”
ISIJ Int.
,
60
(
11
), pp.
2493
2502
.
19.
Kim
,
S. J.
,
Lee
,
T.
, and
Hwang
,
J. K.
,
2020
, “
High-Strength Bolt Manufactured by an Extrusion-Based Forming Process Using Twinning-Induced Plasticity Steel
,”
J. Manuf. Processes
,
59
, pp.
33
42
.
20.
Eom
,
J. G.
,
Son
,
Y. H.
,
Jeong
,
S. W.
,
Ahn
,
S. T.
,
Jang
,
S. M.
,
Yoon
,
D. J.
, and
Joun
,
M. S.
,
2014
, “
Effect of Strain Hardening Capability on Plastic Deformation Behaviors of Material During Metal Forming
,”
Mater. Des.
,
54
, pp.
1010
1018
.
21.
Hor
,
A.
,
Morel
,
F.
,
Lebrun
,
J. L.
, and
Germain
,
G.
,
2013
, “
An Experimental Investigation of the Behaviour of Steels Over Large Temperature and Strain Rate Ranges
,”
Int. J. Mech. Sci.
,
67
, pp.
108
122
.
22.
Kazeminezhad
,
M.
, and
Karimi Taheri
,
A.
,
2006
, “
The Prediction of Macroscopic Shear Bands in Flat Rolled Wire Using the Finite and Slab Element Method
,”
Mater. Lett.
,
60
(
27
), pp.
3265
3268
.
23.
Semiatin
,
S. L.
, and
Jonas
,
J. J.
,
1984
,
Formability and Workability of Metals: Plastic Instability and Flow Localization
,
American Society for Metals
,
Metals Park, OH
, pp.
131
138
.
24.
Hwang
,
J. K.
,
2020
, “
Effect of Cambered and Oval-Grooved Roll on the Strain Distribution During the Flat Rolling Process of a Wire
,”
Processes
,
8
(
7
), p.
876
.
25.
Hwang
,
J. K.
,
2018
, “
Effects of Caliber Rolling on Microstructure and Mechanical Properties in Twinning-Induced Plasticity (TWIP) Steel
,”
Mater. Sci. Eng. A
,
711
, pp.
156
164
.
26.
Dorner
,
D.
,
Adachi
,
Y.
, and
Tsuzaki
,
K.
,
2007
, “
Periodic Crystal Lattice Rotation in Microband Groups in a bcc Metal
,”
Scr. Mater.
,
57
(
8
), pp.
775
778
.
27.
Cizek
,
P.
,
2002
, “
Characteristics of Shear Bands Formed in an Austenitic Stainless Steel During Hot Deformation
,”
Mater. Sci. Eng. A
,
324
(
1–2
), pp.
214
218
.
28.
Paul
,
H.
,
Driver
,
J. H.
,
Maurice
,
C.
, and
Piątkowski
,
A.
,
2007
, “
The Role of Shear Banding on Deformation Texture in Low Stacking Fault Energy Metals as Characterized on Model Ag Crystals
,”
Acta Mater.
,
55
(
2
), pp.
575
588
.
29.
Paul
,
H.
,
Morawiec
,
A.
,
Driver
,
J. H.
, and
Bouzy
,
E.
,
2009
, “
On Twinning and Shear Banding in a Cu–8at% Al Alloy Plane Strain Compressed at 77 K
,”
Int. J. Plast.
,
25
(
8
), pp.
1588
1608
.
30.
Hong
,
C. S.
,
Tao
,
N. R.
,
Huang
,
X.
, and
Lu
,
K.
,
2010
, “
Nucleation and Thickening of Shear Bands in Nano-Scale Twin/Matrix Lamellae of a Cu–Al Alloy Processed by Dynamic Plastic Deformation
,”
Acta Mater.
,
58
(
8
), pp.
3103
3116
.
31.
Morii
,
K.
,
Mecking
,
H.
, and
Nakayama
,
Y.
,
1985
, “
Development of Shear Bands in f.c.c. Single Crystals
,”
Acta Metall.
,
33
(
3
), pp.
379
386
.
32.
Grässel
,
O.
,
Krüger
,
L.
,
Frommeyer
,
G.
, and
Meyer
,
L. W.
,
2000
, “
High Strength Fe-Mn-(Al, Si) TRIP/TWIP Steels Development-Properties-Application
,”
Int. J. Plast.
,
16
(
10–11
), pp.
1391
1409
.
33.
Bouaziz
,
O.
,
Allain
,
S.
,
Scott
,
C. P.
,
Cugy
,
P.
, and
Barbier
,
D.
,
2011
, “
High Manganese Austenitic Twinning Induced Plasticity Steels: A Review of the Microstructure Properties Relationships
,”
Curr. Opin. Solid State Mater. Sci.
,
15
(
4
), pp.
141
168
.
34.
De Cooman
,
B. C.
,
Estrin
,
Y.
, and
Kim
,
S. K.
,
2018
, “
Twinning-Induced Plasticity (TWIP) Steels
,”
Acta Mater.
,
142
, pp.
283
362
.
35.
Dumay
,
A.
,
Chateau
,
J. P.
,
Allain
,
S.
,
Migot
,
S.
, and
Bouaziz
,
O.
,
2008
, “
Influence of Addition Elements on the Stacking-Fault Energy and Mechanical Properties of an Austenite Fe-Mn-C Steel
,”
Mater. Sci. Eng. A
,
483–484
, pp.
184
187
.
36.
Saeed-Akbari
,
A.
,
Imlau
,
J.
,
Prahl
,
U.
, and
Bleck
,
W.
,
2009
, “
Derivation and Variation in Composition-Dependent Stacking Fault Energy Maps Based on Subregular Solution Model in High-Manganese Steels
,”
Metall. Mater. Trans. A
,
40
(
13
), pp.
3076
3090
.
37.
Allain
,
S.
,
Chateau
,
J. P.
,
Bouaziz
,
O.
,
Migot
,
S.
, and
Guelton
,
N.
,
2004
, “
Correlations Between the Calculated Stacking Fault Energy and the Plasticity Mechanisms in Fe-Mn-C Alloys
,”
Mater. Sci. Eng. A
,
387–389
, pp.
158
162
.
38.
Hwang
,
J. K.
,
2020
, “
Deformation Behaviors of Various Fe–Mn–C Twinning-Induced Plasticity Steels: Effect of Stacking Fault Energy and Chemical Composition
,”
J. Mater. Sci.
,
55
(
4
), pp.
1779
1795
.
39.
Zambrano
,
O. A.
,
2018
, “
A General Perspective of Fe–Mn–Al–C Steels
,”
J. Mater. Sci.
,
53
(
20
), pp.
14003
14062
.
40.
Lee
,
Y. K.
,
2012
, “
Microstructural Evolution During Plastic Deformation of Twinning-Induced Plasticity Steels
,”
Scr. Mater.
,
66
(
12
), pp.
1002
1006
.
41.
Hwang
,
J. K.
,
2018
, “
Effect of Copper and Aluminum Contents on Wire Drawing Behavior in Twinning-Induced Plasticity Steels
,”
Mater. Sci. Eng. A
,
737
, pp.
188
197
.
42.
Iankov
,
R.
,
2003
, “
Finite Element Simulation of Profile Rolling of Wire
,”
J. Mater. Process. Technol.
,
142
(
2
), pp.
355
361
.
43.
Kazeminezhad
,
M.
,
Karimi Taheri
,
A.
, and
Tieu
,
A. K.
,
2008
, “
A Study on the Cross-Sectional Profile of Flat Rolled Wire
,”
J. Mater. Process. Technol.
,
200
(
1–3
), pp.
325
330
.
44.
Fereshteh-Saniee
,
F.
,
Pillinger
,
I.
, and
Hartley
,
P.
,
2004
, “
Friction Modelling for the Physical Simulation of the Bulk Metal Forming Processes
,”
J. Mater. Process. Technol.
,
153–154
, pp.
151
156
.
45.
Semiatin
,
S. L.
, and
Lahoti
,
G. D.
,
1981
, “
Deformation and Unstable Flow in Hot Forging of Ti-6Ai-2Sn-4Zr-2Mo-0.1 Si
,”
Metall. Trans. A
,
12
(
1
), pp.
1705
1717
.
46.
Anand
,
L.
, and
Kalidindi
,
S. R.
,
1994
, “
The Process of Shear Band Formation in Plane Strain Compression of fcc Metals: Effects of Crystallographic Texture
,”
Mech. Mater.
,
17
(
2–3
), pp.
223
243
.
47.
Yang
,
L.
, and
Yang
,
L.
,
2020
, “
Revisit Initiation of Localized Plastic Deformation: Shear Band & Necking
,”
Extreme Mech. Lett.
,
40
, p.
100914
.
48.
Yoon
,
S. J.
,
Shin
,
T. J.
,
Lee
,
J. S.
, and
Hwang
,
S. M.
,
2017
, “
Three-Dimensional Finite Element Analysis of Skin-Pass Rolling and New Models for Process Control
,”
ASME J. Manuf. Sci. Eng.
,
139
(
9
), p.
091003
.
49.
Petruška
,
J.
, and
Janı´ček
,
L.
,
2003
, “
On the Evaluation of Strain Inhomogeneity by Hardness Measurement of Formed Products
,”
J. Mater. Process. Technol.
,
143–144
, pp.
300
305
.
50.
Saleh
,
A. A.
,
Pereloma
,
E. V.
, and
Gazder
,
A. A.
,
2011
, “
Texture Evolution of Cold Rolled and Annealed Fe-24Mn-3Al-2Si-1Ni-0.06C TWIP Steel
,”
Mater. Sci. Eng. A
,
528
(
13–14
), pp.
4537
4549
.
51.
Kazeminezhad
,
M.
, and
Karimi Taheri
,
A.
,
2007
, “
Deformation Inhomogeneity in Flattened Copper Wire
,”
Mater. Des.
,
28
(
7
), pp.
2047
2053
.
52.
Utsunomiya
,
H.
,
Hartley
,
P.
, and
Pillinger
,
I.
,
2001
, “
Three-dimensional Elastic-Plastic Finite-Element Analysis of the Flattening of Wire Between Plain Rolls
,”
ASME J. Manuf. Sci. Eng.
,
123
(
3
), pp.
397
404
.
53.
Wusatowski
,
Z.
,
1969
,
Fundamentals of Rolling
,
Pergamon Press
,
London
.
54.
Kobayashi
,
K.
,
Asakawa
,
M.
, and
Kobayashi
,
M.
,
2005
, “
Deformation Behavior of Round Wire in Compression Using a Cylindrical Tool and the Analysis of Width Spreading in Flat Rolling
,”
Wire J. Int.
,
38
(
9
), pp.
74
79
.
55.
Kazeminezhad
,
M.
, and
Karimi Taheri
,
A.
,
2005
, “
An Experimental Investigation on the Deformation Behavior During Wire Flat Rolling Process
,”
J. Mater. Process. Technol.
,
160
(
3
), pp.
313
320
.
56.
Hsiang
,
S. H.
, and
Lin
,
S. L.
,
2007
, “
Modeling and Optimization of Caliber Rolling Process
,”
ASME J. Manuf. Sci. Eng.
,
129
(
1
), pp.
77
83
.
57.
Kazeminezhad
,
M.
, and
Karimi Taheri
,
A.
,
2005
, “
A Theoretical and Experimental Investigation on Wire Flat Rolling Process Using Deformation Pattern
,”
Mater. Des.
,
26
(
2
), pp.
99
103
.
58.
Kazeminezhad
,
M.
, and
Karimi Taheri
,
A.
,
2006
, “
Calculation of the Rolling Pressure Distribution and Force in Wire Flat Rolling Process
,”
J. Mater. Process. Technol.
,
171
(
2
), pp.
253
258
.
59.
Vallellano
,
C.
,
Cabanillas
,
P. A.
, and
Garcia-Lomas
,
F. J.
,
2008
, “
Analysis of Deformations and Stresses in Flat Rolling of Wire
,”
J. Mater. Process. Technol.
,
195
(
1–3
), pp.
63
71
.
60.
Massé
,
T.
,
Chastel
,
Y.
,
Montmitonnet
,
P.
,
Bobadilla
,
C.
,
Persem
,
N.
, and
Foissey
,
S.
,
2012
, “
Mechanical and Damage Analysis Along a Flat-Rolled Wire Cold Forming Schedule
,”
Int. J. Mater. Form.
,
5
(
2
), pp.
129
146
.
61.
Carlsson
,
B.
,
1998
, “
The Contact Pressure Distribution in Flat Rolling of Wire
,”
J. Mater. Process. Technol.
,
73
(
1–3
), pp.
1
6
.
You do not currently have access to this content.