Abstract

The vigorous development of the human cyber-physical system (HCPS) and the next generation of artificial intelligence provide new ideas for smart manufacturing, where manufacturing quality prediction is an important issue in the manufacturing system. However, the small-scale data from humans in emerging HCPS-enabled manufacturing restrict the development of traditional quality prediction methods. To address this question, a data augmentation-based manufacturing quality prediction approach in human cyber-physical systems is proposed in this paper. Specifically, a Data Augmentation-Gradient Boosting Decision Tree (DA-GBDT) model is developed for quality prediction under the HCPS context. In addition, an adaptive selection algorithm of data augmentation rate is designed to balance the trade-off between the training time of the prediction model and the prediction accuracy. Finally, the experimental results of automobile covering products demonstrate that the proposed method can improve the average prediction error of the model compared with the prevailing quality prediction methods. Moreover, the predicted quality information can provide guidance for product optimization decisions in smart manufacturing systems.

References

1.
Zheng
,
P.
,
Wang
,
H.
,
Sang
,
Z.
,
Zhong
,
R.
,
Liu
,
Y.
,
Liu
,
C.
,
Mubarok
,
K.
,
Yu
,
S.
, and
Xu
,
X.
,
2018
, “
Smart Manufacturing Systems for Industry 4.0: Conceptual Framework, Scenarios, and Future Perspectives
,”
Front. Mech. Eng.
,
13
(
2
), pp.
137
150
.
2.
Jiang
,
Y.
, and
Yin
,
S.
,
2017
, “
Recursive Total Principle Component Regression Based Fault Detection and Its Application to Vehicular Cyber-Physical Systems
,”
IEEE Trans. Ind. Informat.
,
14
(
4
), pp.
1415
1423
.
3.
Lou
,
S.
,
Feng
,
Y.
,
Li
,
Z.
,
Zheng
,
H.
, and
Gao
,
Y.
,
Tan
J.
,
2020
, “
An Edge-Based Distributed Decision-Making Method for Product Design Scheme Evaluation
,”
IEEE Trans. Ind. Informat.
,
17
(
2
), pp.
1375
1385
.
4.
Mi
,
S.
,
Feng
,
Y.
,
Zheng
,
H.
,
Wang
,
Y.
,
Gao
,
Y.
, and
Tan
,
J.
,
2021
, “
Prediction Maintenance Integrated Decision-Making Approach Supported by Digital Twin-Driven Cooperative Awareness and Interconnection Framework
,”
J. Manuf. Syst.
,
58
, pp.
329
345
.
5.
Wang
,
B.
,
Xue
,
Y.
,
Yan
,
J.
,
Yang
,
X.
, and
Zhou
,
Y.
,
2020
, “
Human-Centered Intelligent Manufacturing: Overview and Perspectives
,”
Chin. J. Eng. Sci.
,
22
(
4
), p.
139
.
6.
Zhou
,
J.
,
Zhou
,
Y.
,
Wang
,
B.
, and
Zang
,
J.
,
2019
, “
Human–Cyber–Physical Systems (HCPSs) in the Context of New-Generation Intelligent
,”
Manuf. Eng.
,
5
(
4
), pp.
624
636
.
7.
Feng
,
Y.
,
Jiang
,
X.
,
Hong
,
Z.
,
Li
,
Z.
,
Si
,
H.
,
Hu
,
B.
,
Zhang
,
Z.
,
Qiu
,
H.
, and
Tan
,
J.
,
2022
, “
Human-Cyber-Physical System for Operation in Nuclear Reactor Possessing Asymmetric Multi-Task Learning-Based Predicting Framework
,”
J. Manuf. Syst.
,
64
, pp.
443
453
.
8.
Xie
,
J.
,
Liu
,
S.
, and
Wang
,
X.
,
2022
, “
Framework for a Closed-Loop Cooperative Human Cyber-Physical System for the Mining Industry Driven by VR and AR: MHCPS
,”
Comput. Ind. Eng.
,
168
, p.
108050
.
9.
Liu
,
Q.
,
Liu
,
M.
,
Zhou
,
H.
,
Yan
,
F.
,
Ma
,
Y.
, and
Shen
,
W.
,
2022
, “
Intelligent Manufacturing System With Human-Cyber-Physical Fusion and Collaboration for Process Fine Control
,”
J. Manuf. Syst.
,
64
, pp.
149
169
.
10.
Ling
,
S.
,
Guo
,
D.
,
Rong
,
Y.
, and
Huang
,
G.
,
2022
, “
Spatio-Temporal Synchronisation for Human-Cyber-Physical Assembly Workstation 4.0 Systems
,”
Int. J. Prod. Res.
,
60
(
2
), pp.
704
722
.
11.
Chen
,
X.
,
Eder
,
M. A.
,
Shihavuddin
,
A.
, and
Zheng
,
D.
,
2021
, “
A Human-Cyber-Physical System Toward Intelligent Wind Turbine Operation and Maintenance
,”
Sustainability
,
13
(
2
), p.
561
.
12.
Tian
,
G.
,
Lu
,
W.
,
Zhang
,
X.
,
Zhan
,
M.
,
Dulebenets
,
M. A.
,
Aleksandrov
,
A.
,
Fathollahi-Fard
,
A. M.
, and
Ivanov
,
M.
,
2023
, “
A Survey of Multi-Criteria Decision-Making Techniques for Green Logistics and Low-Carbon Transportation Systems
,”
Environ. Sci. Pollut. Res.
,
30
(
20
), pp.
1
23
.
13.
Tian
,
G.
,
Zhang
,
C.
,
Fathollahi-Fard
,
A. M.
,
Li
,
Z.
,
Zhang
,
C.
, and
Jiang
,
Z.
,
2022
, “
An Enhanced Social Engineering Optimizer for Solving an Energy-Efficient Disassembly Line Balancing Problem Based on Bucket Brigades and Cloud Theory
,”
IEEE Trans. Ind. Informat.
,
19
(
5
), pp.
7148
7159
.
14.
Arinez
,
J. F.
,
Chang
,
Q.
,
Gao
,
R. X.
,
Xu
,
C.
, and
Zhang
,
J.
,
2020
, “
Artificial Intelligence in Advanced Manufacturing: Current Status and Future Outlook
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p.
110804
.
15.
Wang
,
B.
,
Zheng
,
P.
,
Yin
,
Y.
,
Shih
,
A.
, and
Wan
,
L.
,
2022
, “
Toward Human-Centric Smart Manufacturing: A Human-Cyber-Physical Systems (HCPS) Perspective
,”
J. Manuf. Syst.
,
63
, pp.
471
490
.
16.
Thiede
,
S.
,
Turetskyy
,
A.
,
Kwade
,
A.
,
Kara
,
S.
, and
Herrmann
,
C.
,
2019
, “
Data Mining in Battery Production Chains Towards Multi-Criterial Quality Prediction
,”
CIRP Ann. Manuf. Technol.
,
68
(
1
), pp.
463
466
.
17.
Wei
,
Z.
,
Feng
,
Y.
,
Hong
,
Z.
,
Qu
,
R.
, and
Tan
,
J.
,
2017
, “
Product Quality Improvement Method in Manufacturing Process Based on the Kernel Optimization Algorithm
,”
Int. J. Prod. Res.
,
55
(
19
), pp.
5597
5608
.
18.
He
,
K.
, and
Li
,
X.
,
2016
, “
A Quantitative Estimation Technique for Welding Quality Using Local Mean Decomposition and Support Vector Machine
,”
J. Intell. Manuf.
,
27
(
3
), pp.
525
533
.
19.
Tian
,
L.
, and
Luo
,
Y.
,
2020
, “
A Study on the Prediction of Inherent Deformation in Fillet-Welded Joint Using Support Vector Machine and Genetic Optimization Algorithm
,”
J. Intell. Manuf.
,
31
(
3
), pp.
575
596
.
20.
Gu
,
L.
, and
Zheng
,
T.
,
2016
, “
Study on the Generalized Holo-Factors Mathematical Model of Dimension-Error and Shape-Error for Sheet Metal in Stamping Based on the Back Propagation (BP) Neural Network
,”
ASME J. Manuf. Sci. Eng.
,
138
(
6
), p.
064502
.
21.
Zhao
,
D.
,
Zhao
,
K.
,
Ren
,
D.
, and
Guo
,
X.
,
2017
, “
“Ultrasonic Welding of Magnesium–Titanium Dissimilar Metals: A Study on Influences of Welding Parameters on Mechanical Property by Experimentation and Artificial Neural Network” ASME J
,”
Manuf. Sci. Eng.
,
139
(
3
), p.
031019
.
22.
Friedman
,
J.
,
2001
, “
Greedy Function Approximation: A Gradient Boosting Machine
,”
Ann. Stat.
,
29
(
5
), pp.
1189
1232
.
23.
Emmanouilidis
,
C.
,
Pistofidis
,
P.
,
Bertoncelj
,
L.
,
Katsouros
,
V.
,
Fournaris
,
A.
,
Koulamas
,
C.
, and
Ruiz-Carcel
,
C.
,
2019
, “
Enabling the Human in the Loop: Linked Data and Knowledge in Industrial Cyber-Physical Systems
,”
Annu. Rev. Control.
,
47
, pp.
249
265
.
24.
Osisanwo
,
F. Y.
,
Akinsola
,
J. E. T.
,
Awodele
,
O.
,
Hinmikaiye
,
J. O.
,
Olakanmi
,
O.
, and
Akinjobi
,
J.
,
2017
, “
Supervised Machine Learning Algorithms: Classification and Comparison
,”
Int. J. Comput. Trends. Technol.
,
48
(
3
), pp.
128
138
.
25.
Gao
,
Y.
,
Liu
,
X.
, and
Xiang
,
J.
,
2020
, “
FEM Simulation-Based Generative Adversarial Networks to Detect Bearing Faults
,”
IEEE Trans. Ind. Informat.
,
16
(
7
), pp.
4961
4971
.
26.
Niu
,
S.
,
Li
,
B.
,
Wang
,
X.
, and
Lin
,
H.
,
2020
, “
Defect Image Sample Generation With GAN for Improving Defect Recognition
,”
IEEE Trans. Autom. Sci. Eng.
,
17
(
3
), pp.
1611
1622
.
27.
Wang
,
X.
,
Huang
,
H.
,
Hu
,
Y.
, and
Yang
,
Y.
,
2018
, “
Partial Discharge Pattern Recognition with Data Augmentation Based on Generative Adversarial Networks
,”
Proceedings of the 2018 Condition Monitoring and Diagnosis (CMD)
,
Perth, WA, Australia
,
Sept. 23–26
, IEEE, pp.
1
4
.
28.
Zhu
,
Q.
,
Hou
,
K.
,
Chen
,
Z.
,
Gao
,
Z.
,
Xu
,
Y.
, and
He
,
Y.
,
2021
, “
Novel Virtual Sample Generation Using Conditional GAN for Developing Soft Sensor With Small Data
,”
Eng. Appl. Artif. Intel.
,
106
, p.
104497
.
29.
He
,
Y.
,
Hua
,
Q.
,
Zhu
,
Q.
, and
Lu
,
S.
,
2022
, “
Enhanced Virtual Sample Generation Based on Manifold Features: Applications to Developing Soft Sensor Using Small Data
,”
ISA Trans.
,
126
, pp.
398
406
.
30.
Fernández
,
A.
,
Garcia
,
S.
,
Herrera
,
F.
, and
Chawla
,
N.
,
2018
, “
SMOTE for Learning From Imbalanced Data: Progress and Challenges, Marking the 15-Year Anniversary
,”
J. Mach. Learn. Res.
,
61
, pp.
863
905
.
31.
Cieslak
,
D. A.
, and
Chawla
,
N. V.
,
2008
, “
Start Globally, Optimize Locally, Predict Globally: Improving Performance on Imbalanced Data
,”
Proceedings of the 2008 Eighth IEEE International Conference on Data Mining
,
Pisa, Italy
,
Dec. 15–19
, pp.
143
152
.
32.
Bergstra
,
J.
,
Bardenet
,
R.
,
Bengio
,
Y.
, and
Kégl
,
B.
,
2011
, “
Algorithms for Hyper-Parameter Optimization
,”
Proceedings of the 24th International Conference on Neural Information Processing Systems
,
Granada, Spain
,
Dec. 12–15
.
33.
Zhang
,
H.
, and
Chen
,
C.
,
2023
, “
Shape Optimization of Flat Clinching Tools by Combining Finite Element Simulation and Response Surface Method
,”
ASME J. Manuf. Sci. Eng.
,
145
(
2
), p.
021013
.
34.
Yang
,
Y.
, and
Shao
,
C.
,
2018
, “
Spatial Interpolation for Periodic Surfaces in Manufacturing Using a Bessel Additive Variogram Model
,”
ASME J. Manuf. Sci. Eng.
,
140
(
6
), p.
061001
.
35.
Bergstra
,
J.
, and
Bengio
,
Y.
,
2012
, “
Random Search for Hyper-Parameter Optimization
,”
J. Mach. Learn. Res.
,
13
, pp.
281
305
. https://jmlr.org/papers/v13/bergstra12a.html
You do not currently have access to this content.