Abstract

With the wide application of new Electric Vehicle (EV) batteries in various industrial fields, it is important to establish a systematic intelligent battery recycling system that can be used to find out the resource wastes and environmental impacts of the retired EV battery. By combining the uncertain and dynamic disassembly and echelon utilization of EV battery recycling in the remanufacturing fields, human–robot collaboration (HRC) disassembly method can be used to solve huge challenges about the efficiency of retired EV battery recycling. In order to find out the disassembly task planning based on HRC disassembly process for retired EV battery recycling, a dynamic disassembly sequential task optimization method algorithm is proposed by Multi-Agent Reinforcement Learning (MARL). Furthermore, it is necessary to disassemble the retired EV battery disassembly trajectory based on the HRC disassembly task in 2D planar, which can be used to acquire the optimal disassembly paths in the same disassembly planar by combining the Q-learning algorithm. The disassembly task sequence can be completed through standard trajectory matching. Finally, the feasibility of the proposed method is verified by disassembly operations for a specific battery module case.

References

1.
Zhu
,
Y.
,
Ding
,
Q.
,
Zhao
,
Y.
,
Ai
,
J.
,
Li
,
Y.
, and
Cao
,
Y.
,
2020
, “
Study on the Process of Harmless Treatment of Residual Electrolyte in Battery Disassembly
,”
Waste Manage. Res.
,
38
(
11
), pp.
1295
1300
.
2.
Bauer
,
A.
,
Wollherr
,
D.
, and
Buss
,
M.
,
2008
, “
Human-Robot Collaboration: A Survey
,”
Int. J. Humanoid Rob.
,
5
(
1
), pp.
47
66
.
3.
Wu
,
T.
,
Zhang
,
Z.
,
Yin
,
T.
, and
Zhang
,
Y.
,
2022
, “
Multi-Objective Optimisation for Cell-Level Disassembly of Waste Power Battery Modules in Human-Machine Hybrid Mode
,”
Waste Manage.
,
144
(
4
), pp.
513
526
.
4.
Xiao
,
J.
,
Li
,
W.
,
Lv
,
Y.
, and
Du
,
G.
,
2021
, “
Disassembly Information Interoperability for Electric Vehicle Battery in Re-Manufacturing Based on STEP Standards
,”
Procedia CIRP
,
104
(
1
), pp.
1873
1877
.
5.
Lu
,
Q.
,
Ren
,
Y.
,
Jin
,
H.
,
Meng
,
L.
,
Li
,
L.
,
Zhang
,
C.
, and
Sutherland
,
J. W.
,
2020
, “
A Hybrid Metaheuristic Algorithm for a Profit-Oriented and Energy-Efficient Disassembly Sequencing Problem
,”
Rob. Comput. Integr. Manuf.
,
61
(
1
), p.
101828
.
6.
Ilgin
,
M. A.
, and
Taşoǧlu
,
G. T.
,
2016
, “
Simultaneous Determination of Disassembly Sequence and Disassembly-to-Order Decisions Using Simulation Optimization
,”
ASME J. Manuf. Sci. Eng.
,
138
(
10
), p. 101012.
7.
Kay
,
I.
,
Farhad
,
S.
,
Mahajan
,
A.
,
Esmaeeli
,
R.
, and
Hashemi
,
S. R.
,
2022
, “
Robotic Disassembly of Electric Vehicles’ Battery Modules for Recycling
,”
Energies
,
15
(
13
), p.
4856
.
8.
Yang
,
Y.
,
Okonkwo
,
E. G.
,
Huang
,
G.
,
Xu
,
S.
,
Sun
,
W.
, and
He
,
Y.
,
2021
, “
On the Sustainability of Lithium Ion Battery Industry—A Review and Perspective
,”
Energy Storage Mater.
,
36
(
1
), pp.
186
212
.
9.
Xiao
,
J.
,
Jiang
,
C.
, and
Wang
,
B.
,
2023
, “
A Review on Dynamic Recycling of Electric Vehicle Battery: Disassembly and Echelon Utilization
,”
Batteries
,
9
(
1
), p.
57
.
10.
Bentaha
,
M. L.
,
Battaïa
,
O.
,
Dolgui
,
A.
, and
Hu
,
S. J.
,
2014
, “
Dealing With Uncertainty in Disassembly Line Design
,”
CIRP Ann.
,
63
(
1
), pp.
21
24
.
11.
Liu
,
Z.
,
Liu
,
Q.
,
Xu
,
W.
,
Liu
,
Z.
,
Zhou
,
Z.
, and
Chen
,
J.
,
2019
, “
Deep Learning-Based Human Motion Prediction Considering Context Awareness for Human-Robot Collaboration in Manufacturing
,”
Procedia CIRP
,
83
(
1
), pp.
272
278
.
12.
Marconi
,
M.
,
Palmieri
,
G.
,
Callegari
,
M.
, and
Germani
,
M.
,
2019
, “
Feasibility Study and Design of an Automatic System for Electronic Components Disassembly
,”
ASME J. Manuf. Sci. Eng.
,
141
(
2
), p. 021011.
13.
Marshall
,
J.
,
Gastol
,
D.
,
Sommerville
,
R.
,
Middleton
,
B.
,
Goodship
,
V.
, and
Kendrick
,
E.
,
2020
, “
Disassembly of Li Ion Cells—Characterization and Safety Considerations of a Recycling Scheme
,”
Metals (Basel)
,
10
(
6
), pp.
1
22
.
14.
Jiang
,
H.
,
Yi
,
J.
,
Zhu
,
X.
, and
Li
,
Z.
,
2018
, “
Generating Disassembly Tasks for Selective Disassembly Using Ontology-Based Disassembly Knowledge Representation
,”
Assem. Autom.
,
38
(
2
), pp.
113
124
.
15.
Wang
,
L.
,
Gao
,
R.
,
Váncza
,
J.
,
Krüger
,
J.
,
Wang
,
X. V.
,
Makris
,
S.
, and
Chryssolouris
,
G.
,
2019
, “
Symbiotic Human-Robot Collaborative Assembly
,”
CIRP Ann.
,
68
(
2
), pp.
701
726
.
16.
Liu
,
S.
,
Wang
,
L.
, and
Wang
,
X. V.
,
2021
, “
Sensorless Haptic Control for Human-Robot Collaborative Assembly
,”
CIRP J. Manuf. Sci. Technol.
,
32
(
1
), pp.
132
144
.
17.
Liu
,
S.
,
Wang
,
X. V.
, and
Wang
,
L.
,
2022
, “
Digital Twin-Enabled Advance Execution for Human-Robot Collaborative Assembly
,”
CIRP Ann.
,
71
(
1
), pp.
25
28
.
18.
Liu
,
H.
, and
Wang
,
L.
,
2018
, “
Gesture Recognition for Human-Robot Collaboration: A Review
,”
Int. J. Ind. Ergon.
,
68
(
11
), pp.
355
367
.
19.
Wang
,
L.
,
Liu
,
S.
,
Cooper
,
C.
,
Wang
,
X. V.
, and
Gao
,
R. X.
,
2021
, “
Function Block-Based Human-Robot Collaborative Assembly Driven by Brainwaves
,”
CIRP Ann.
,
70
(
1
), pp.
5
8
.
20.
Butepage
,
J.
,
Kjellstrom
,
H.
, and
Kragic
,
D.
,
2018
, “
Anticipating Many Futures: Online Human Motion Prediction and Generation for Human-Robot Interaction
,”
Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA)
, Vol.
1
, No.
1
, pp.
4563
4570
.
21.
Li
,
S.
,
Wang
,
R.
,
Zheng
,
P.
, and
Wang
,
L.
,
2021
, “
Towards Proactive Human–Robot Collaboration: A Foreseeable Cognitive Manufacturing Paradigm
,”
J. Manuf. Syst.
,
60
(
1
), pp.
547
552
.
22.
Li
,
S.
,
Zheng
,
P.
,
Fan
,
J.
, and
Wang
,
L.
,
2022
, “
Toward Proactive Human—Robot Collaborative Assembly : A Multimodal Transfer-Learning-Enabled Action Prediction Approach
,”
IEEE Trans. Ind. Electron.
,
69
(
8
), pp.
8579
8588
.
23.
Hjorth
,
S.
, and
Chrysostomou
,
D.
,
2022
, “
Human–Robot Collaboration in Industrial Environments: A Literature Review on Non-Destructive Disassembly
,”
Rob. Comput. Integr. Manuf.
,
73
(
1
), p.
102208
.
24.
Zhou
,
Z.
,
Liu
,
J.
,
Pham
,
D. T.
,
Xu
,
W.
,
Ramirez
,
F. J.
,
Ji
,
C.
, and
Liu
,
Q.
,
2019
, “
Disassembly Sequence Planning: Recent Developments and Future Trends
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
,
233
(
5
), pp.
1450
1471
.
25.
Hu
,
Y.
, and
Ameta
,
G.
,
2019
, “
A Charts-Based Approach to Estimate Disassembly Time: Hypothesis, Model and Validation
,”
ASME J. Manuf. Sci. Eng.
,
141
(
2
), p. 021009.
26.
Kongar
,
E.
, and
Gupta
,
S. M.
,
2006
, “
Disassembly Sequencing Using Genetic Algorithm
,”
Int. J. Adv. Manuf. Technol.
,
30
(
5–6
), pp.
497
506
.
27.
Wang
,
J. F.
,
Liu
,
J. H.
,
Li
,
S. Q.
, and
Zhong
,
Y. F.
,
2003
, “
Intelligent Selective Disassembly Using the Ant Colony Algorithm
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
17
(
4–5
), pp.
325
333
.
28.
Tao
,
F.
,
Bi
,
L.
,
Zuo
,
Y.
, and
Nee
,
A. Y. C.
,
2018
, “
Partial/Parallel Disassembly Sequence Planning for Complex Products
,”
ASME J. Manuf. Sci. Eng.
,
140
(
1
), p.
011016
.
29.
Ilgin
,
M. A.
,
2019
, “
A DEMATEL-Based Disassembly Line Balancing Heuristic
,”
ASME J. Manuf. Sci. Eng.
,
141
(
2
), p.
021002
.
30.
Xiao
,
J.
,
Anwer
,
N.
,
Li
,
W.
,
Eynard
,
B.
, and
Zheng
,
C.
,
2022
, “
Dynamic Bayesian Network-Based Disassembly Sequencing Optimization for Electric Vehicle Battery
,”
CIRP J. Manuf. Sci. Technol.
,
38
(
1
), pp.
824
835
.
31.
Zhao
,
X.
,
Li
,
C.
,
Tang
,
Y.
, and
Cui
,
J.
,
2021
, “
Reinforcement Learning-Based Selective Disassembly Sequence Planning for the End-of-Life
,”
IEEE Rob. Autom. Lett.
,
6
(
4
), pp.
7807
7814
.
32.
Xu
,
W.
,
Tang
,
Q.
,
Liu
,
J.
,
Liu
,
Z.
,
Zhou
,
Z.
, and
Pham
,
D. T.
,
2020
, “
Disassembly Sequence Planning Using Discrete Bees Algorithm for Human-Robot Collaboration in Remanufacturing
,”
Rob. Comput. Integr. Manuf.
,
62
(
1
), p.
101860
.
33.
Choux
,
M.
,
Bigorra
,
E. M.
, and
Tyapin
,
I.
,
2021
, “
Task Planner for Robotic Disassembly of Electric Vehicle Battery Pack
,”
Metals (Basel
,
11
(
3
), pp.
1
18
.
34.
Fan
,
J.
,
Member
,
S.
,
Zheng
,
P.
,
Member
,
S.
,
Li
,
S.
, and
Member
,
S.
,
2022
, “
An Integrated Hand-Object Dense Pose Estimation Approach With Explicit Occlusion Awareness for Human-Robot Collaborative Disassembly
,”
IEEE Trans. Autom. Sci. Eng.
,
10
(
4
), pp.
1
10
.
35.
Osti
,
F.
,
Ceruti
,
A.
,
Liverani
,
A.
, and
Caligiana
,
G.
,
2017
, “
Semi-Automatic Design for Disassembly Strategy Planning: An Augmented Reality Approach
,”
Procedia Manuf.
,
11
(
5
), pp.
1481
1488
.
36.
McGovern
,
S. M.
, and
Gupta
,
S. M.
,
2006
, “
Ant Colony Optimization for Disassembly Sequencing With Multiple Objectives
,”
Int. J. Adv. Manuf. Technol.
,
30
(
5
), pp.
481
496
.
37.
Tripathi
,
M.
,
Agrawal
,
S.
,
Pandey
,
M. K.
,
Shankar
,
R.
, and
Tiwari
,
M. K.
,
2009
, “
Real World Disassembly Modeling and Sequencing Problem: Optimization by Algorithm of Self-Guided Ants (ASGA)
,”
Rob. Comput. Integr. Manuf.
,
25
(
3
), pp.
483
496
.
38.
Xia
,
K.
,
Gao
,
L.
,
Li
,
W.
, and
Chao
,
K. M.
,
2014
, “
Disassembly Sequence Planning Using a Simplified Teaching-Learning-Based Optimization Algorithm
,”
Adv. Eng. Inf.
,
28
(
4
), pp.
518
527
.
39.
Tseng
,
Y. J.
,
Yu
,
F. Y.
, and
Huang
,
F. Y.
,
2011
, “
A Green Assembly Sequence Planning Model With a Closed-Loop Assembly and Disassembly Sequence Planning Using a Particle Swarm Optimization Method
,”
Int. J. Adv. Manuf. Technol.
,
57
(
9
), pp.
1183
1197
.
40.
Kheder
,
M.
,
Trigui
,
M.
, and
Aifaoui
,
N.
,
2015
, “
Disassembly Sequence Planning Based on a Genetic Algorithm
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
229
(
12
), pp.
2281
2290
.
41.
Liu
,
Z.
,
Liu
,
Q.
,
Wang
,
L.
,
Xu
,
W.
, and
Zhou
,
Z.
,
2021
, “
Task-Level Decision-Making for Dynamic and Stochastic Human-Robot Collaboration Based on Dual Agents Deep Reinforcement Learning
,”
Int. J. Adv. Manuf. Technol.
,
115
(
11
), pp.
3533
3552
.
42.
Chen
,
B.
,
Xu
,
W.
,
Liu
,
J.
,
Ji
,
Z.
, and
Zhou
,
Z.
,
2020
, “
Robotic Disassembly Sequence Planning Considering Robotic Collision Avoidance Trajectory in Remanufacturing
,”
Proceedings of the 2020 IEEE 18th International Conference on Industrial Informatics (INDIN)
,
Warwick, UK
,
July 20–23
, pp.
494
501
.
43.
Liu
,
Z.
,
Liu
,
Q.
,
Xu
,
W.
,
Wang
,
L.
, and
Zhou
,
Z.
,
2022
, “
Robot Learning Towards Smart Robotic Manufacturing: A Review
,”
Rob. Comput. Integr. Manuf.
,
77
(
1
), p.
102360
.
44.
Poschmann
,
H.
,
Brüggemann
,
H.
, and
Goldmann
,
D.
,
2020
, “
Disassembly 4.0: A Review on Using Robotics in Disassembly Tasks as a Way of Automation
,”
Chem.-Ing.-Tech.
,
92
(
4
), pp.
341
359
.
You do not currently have access to this content.