Abstract

The automotive industry is evolving by incorporating innovative tools to improve production processes. A proper manufacturing process influences the behavior of the door grommet during its lifetime. In this paper, molecular dynamics simulations are conducted to evaluate the chemical and physical crosslinking of the EPDM rubber over a range of temperatures using a COMPASS force field. Then, once the ethylene propylene diene monomer (EPDM) model was equilibrated and all possible crosslinks were formed, additional simulations were performed on the model to explore its mechanical behavior. Subsequently, using the superposition principle, viscosity and curing kinetics were evaluated using phenomenological models. To validate the results of the simulations, three injection tests of the door grommet were performed at different temperature conditions. The results indicate that the viscosity and elastic properties increase with increasing levels of crosslink density and that the critical gel point decreases with temperature. Molecular dynamics superposition results in phenomenological models are in reasonable agreement with the kinetic and viscoelastic behavior of EPDM during and after the injection process. The results presented in this paper provide novel molecular-level findings on the crosslinking mechanisms of amorphous polymers and their influence on viscoelastic behavior, which could facilitate the design of the injection process for door grommet applications.

References

1.
Ghasemi
,
A.
,
2012
, “
Computer Aided Simulations in Automotive Engine Gasket Sealing
,” SAE Technical Paper No. 0148-7191.
2.
Murat
,
K. O. R. U.
,
Serçe
,
O.
,
Osman
,
İPEK
,
Karabulut
,
H.
, and
Hidiroğlu
,
M.
,
2020
, “
Determining the Effect of air Chambers on Rubber Insulation in Automotive Parts for Sound Absorption Coefficient and Transmission Loss
,”
Mühendis. Bilim. Tasar. Derg.
,
8
(
4
), pp.
1053
1061
.
3.
Bouguedad
,
D.
,
Mekhaldi
,
A.
,
Jbara
,
O.
,
Rondot
,
S.
,
Hadjadj
,
A.
,
Douglade
,
J.
, and
Dony
,
P.
,
2015
, “
Physico-Chemical Study of Thermally Aged EPDM Used in Power Cables Insulation
,”
IEEE Trans. Dielectr. Electr. Insul.
,
22
(
6
), pp.
3207
3215
.
4.
Ravishankar
,
P.
,
2012
, “
Treatise on EPDM
,”
Rubber Chem. Technol.
,
85
(
3
), pp.
327
349
.
5.
Restrepo-Zapata
,
N. C.
,
Eagleburger
,
B.
,
Saari
,
T.
,
Osswald
,
T. A.
, and
Hernández-Ortiz
,
J. P.
,
2016
, “
Chemorheological Time-Temperature-Transformation-Viscosity Diagram: Foamed EPDM Rubber Compound
,”
J. Appl. Polym. Sci.
,
133
(
38
).
6.
Milani
,
G.
, and
Milani
,
F.
,
2011
, “
EPDM Accelerated Sulfur Vulcanization: A Kinetic Model Based on a Genetic Algorithm
,”
J. Math. Chem.
,
49
(
7
), pp.
1357
1383
.
7.
Shaji
,
R.
, and
Kumar
,
N. N.
,
2022
, “
Simulation of Room Temperature Vulcanized Gasket Failure at Engine T-Joints
,”
ARAI J. Mobi. Tech.
,
2
(
1
), pp.
108
111
.
8.
Shi
,
C.
,
Cao
,
C.
,
Lei
,
M.
,
Peng
,
L.
, and
Shen
,
J.
,
2015
, “
Time-Dependent Performance and Constitutive Model of EPDM Rubber Gasket Used for Tunnel Segment Joints
,”
Tunn. Undergr. Space Technol.
,
50
, pp.
490
498
.
9.
Wang
,
Y.
,
Yang
,
Y.
, and
Tao
,
M.
,
2019
, “
Understanding Free Volume Characteristics of Ethylene-Propylene-Diene Monomer (EPDM) Through Molecular Dynamics Simulations
,”
Materials
,
12
(
4
), p.
612
,
10.
Halley
,
P. J.
, and
Mackay
,
M. E.
,
1996
, “
Chemorheology of Thermosets—An Overview
,”
Polym. Eng. Sci.
,
36
(
5
), pp.
593
609
.
11.
Li
,
C.
,
Coons
,
E.
, and
Strachan
,
A.
,
2014
, “
Material Property Prediction of Thermoset Polymers by Molecular Dynamics Simulations
,”
Acta Mech.
,
225
(
4
), pp.
1187
1196
.
12.
Bandyopadhyay
,
A.
,
Valavala
,
P. K.
,
Clancy
,
T. C.
,
Wise
,
K. E.
, and
Odegard
,
G. M.
,
2011
, “
Molecular Modeling of Crosslinked Epoxy Polymers: The Effect of Crosslink Density on Thermomechanical Properties
,”
Polymer
,
52
(
11
), pp.
2445
2452
.
13.
Habieb
,
A. B.
,
Milani
,
F.
,
Milani
,
G.
,
Pianese
,
G.
, and
Torrini
,
D.
,
2022
, “
Vulcanization Degree Influence on the Mechanical Properties of Fiber Reinforced Elastomeric Isolators Made With Reactivated EPDM
,”
Polym. Test.
,
108
, p.
107496
.
14.
Feng
,
Y.
,
Zheng
,
W.
,
Zhao
,
Z.
,
Liang
,
B.
,
Ye
,
H.
,
Ge
,
Q.
,
Zhang
,
X.
, and
Zhang
,
W.
,
2022
, “
Characterization and Finite Element Modeling for Thermoset Resin of Carbon Fiber Prepregs During Curing
,”
ASME J. Manuf. Sci. Eng.
,
144
(
8
), p. 081007.
15.
Wang
,
Y.
,
Liu
,
H.
,
Li
,
P.
, and
Wang
,
L.
,
2022
, “
The Effect of Cross-Linking Type on EPDM Elastomer Dynamics and Mechanical Properties: A Molecular Dynamics Simulation Study
,”
Polymers
,
14
(
7
), p.
1308
.
16.
Dewapriya
,
M. A. N.
, and
Miller
,
R. E.
,
2021
, “
Molecular Dynamics Simulations of Shock Propagation and Spallation in Amorphous Polymers
,”
ASME J. Appl. Mech.
,
88
(
10
), p. 101005.
17.
DeBoyace
,
K.
,
Buckner
,
I. S.
,
Gong
,
Y.
,
Ju
,
T.-c. R.
, and
Wildfong
,
P. L. D.
,
2018
, “
Modeling and Prediction of Drug Dispersability in Polyvinylpyrrolidone-Vinyl Acetate Copolymer Using a Molecular Descriptor
,”
J. Pharm. Sci.
,
107
(
1
), pp.
334
343
.
18.
Grisoni
,
F.
,
Consonni
,
V.
, and
Todeschini
,
R.
,
2018
, “Impact of Molecular Descriptors on Computational Models,”
Computational Chemogenomics
,
J. B.
Brown
, ed.,
Springer New York
,
New York
, pp.
171
209
.
19.
Rezakazemi
,
M.
,
Kurniawan
,
T. A.
,
Albadarin
,
A. B.
, and
Shirazian
,
S.
,
2018
, “
Molecular Modeling Investigation on Mechanism of Phenol Removal From Aqueous Media by Single- and Multi-Walled Carbon Nanotubes
,”
J. Mol. Liq.
,
271
, pp.
24
30
.
20.
van Duin
,
M.
,
Orza
,
R.
,
Peters
,
R.
, and
Chechik
,
V.
,
2010
, “
Mechanism of Peroxide Cross-Linking of EPDM Rubber
,”
Macromol. Symp.
,
291–292
(
1
), pp.
66
74
.
21.
Zachary
,
M.
,
Camara
,
S.
,
Whitwood
,
A. C.
,
Gilbert
,
B. C.
,
van Duin
,
M.
,
Meier
,
R. J.
, and
Chechik
,
V.
,
2008
, “
EPR Study of Persistent Free Radicals in Cross-Linked EPDM Rubbers
,”
Eur. Polym. J.
,
44
(
7
), pp.
2099
2107
.
22.
Sun
,
H.
,
1998
, “
COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase Applications Overview With Details on Alkane and Benzene Compounds
,”
J. Phys. Chem. B
,
102
(
38
), pp.
7338
7364
.
23.
McQuaid
,
M. J.
,
Sun
,
H.
, and
Rigby
,
D.
,
2004
, “
Development and Validation of COMPASS Force Field Parameters for Molecules With Aliphatic Azide Chains
,”
J. Comput. Chem.
,
25
(
1
), pp.
61
71
.
24.
Paterlini
,
M. G.
, and
Ferguson
,
D. M.
,
1998
, “
Constant Temperature Simulations Using the Langevin Equation With Velocity Verlet Integration
,”
Chem. Phys.
,
236
(
1
), pp.
243
252
.
25.
Yin
,
K.
,
Zou
,
D.
,
Zhong
,
J.
, and
Xu
,
D.
,
2007
, “
A New Method for Calculation of Elastic Properties of Anisotropic Material by Constant Pressure Molecular Dynamics
,”
Comput. Mater. Sci.
,
38
(
3
), pp.
538
542
.
26.
Varadwaj
,
P. R.
,
2020
, “
Combined Molecular Dynamics and DFT Simulation Study of the Molecular and Polymer Properties of a Catechol-Based Cyclic Oligomer of Polyether Ether Ketone
,”
Polymers
,
12
(
5
), p.
1054
.
27.
Brown
,
D.
, and
Neyertz
,
S.
,
1995
, “
A General Pressure Tensor Calculation for Molecular Dynamics Simulations
,”
Mol. Phys.
,
84
(
3
), pp.
577
595
.
28.
Sharma
,
S.
,
Kumar
,
P.
,
Chandra
,
R.
,
Singh
,
S.
,
Mandal
,
A.
, and
Dondapati
,
R.
,
2019
, “Overview of BIOVIA Materials Studio, LAMMPS, and GROMACS,”
Molecular Dynamics Simulation of Nanocomposites Using BIOVIA Materials Studio, Lammps and Gromacs
,
S.
Sharma
, ed.,
Elsevier
,
Amsterdam, Netherlands
, pp.
39
100
.
29.
Tsai
,
D.
,
1979
, “
The Virial Theorem and Stress Calculation in Molecular Dynamics
,”
J. Chem. Phys.
,
70
(
3
), pp.
1375
1382
.
30.
Gómez-Jimenez
,
S.
,
Becerra-Ferreiro
,
A. M.
,
Jareño-Betancourt
,
E.
, and
Vázquez-Penagos
,
J.
,
2021
, “
Phenomenological Analysis of the Cured Kinetics in the Order n of the Reaction as a Function of the Temperature of an EPDM Polymer
,”
ASME J. Manuf. Sci. Eng.
,
143
(
8
), p. 081011.
31.
Gómez-Jimenez
,
S.
,
Becerra-Ferreiro
,
A. M.
,
Jareño-Betancourt
,
E.
, and
Vázquez-Penagos
,
J.
,
2020
, “
Phenomenological Modeling of the Apparent Viscosity as a Function of the Degree of Curing of an EPDM Elastomer
,”
MRS Adv.
,
5
(
62
), pp.
3205
3214
.
32.
Gómez-Jimenez
,
S.
,
Becerra-Ferreiro
,
A. M.
,
Jareño-Betancourt
,
E.
, and
Vázquez-Penagos
,
J.
,
2019
, “
Phenomenological Model for the Reaction Order n in the Kinetics of Curing an Elastomer EPDM
,”
MRS Adv.
,
4
(
59–60
), pp.
3299
3310
.
33.
Kamal
,
M. R.
, and
Sourour
,
S.
,
1973
, “
Kinetics and Thermal Characterization of Thermoset Cure
,”
Polym. Eng. Sci.
,
13
(
1
), pp.
59
64
.
34.
Yeoh
,
O. H.
,
2012
, “
Mathematical Modeling of Vulcanization Characteristics
,”
Rubber Chem. Technol.
,
85
(
3
), pp.
482
492
.
35.
Xie
,
B. G.
,
Wang
,
H.
,
Lu
,
R. L.
,
Wang
,
H.
,
Xia
,
R.
,
Chen
,
P.
, and
Qian
,
J. S.
,
2020
, “
A Combined Simulation and Experiment Study on Polyisoprene Rubber Composites
,”
Compos. Sci. Technol.
,
200
, p.
108398
.
36.
Papanikolaou
,
M.
,
Drikakis
,
D.
, and
Asproulis
,
N.
,
2015
, “
Molecular Dynamics Modelling of Mechanical Properties of Polymers for Adaptive Aerospace Structures
,”
AIP Conf. Proc.
,
1646
(
1
), pp.
66
71
.
You do not currently have access to this content.