Abstract

This article investigates printing hollow tubes using the digital glass-forming process. A CO2 laser locally heats continuously fed glass tube feedstock so that it can be plastically deformed. This allows it to be bent and deposited onto a workpiece. The workpiece is positioned relative to the laser using precision four-axis computer numerical control stages. The loading on the laser-heated region is controlled by the stages as well as pneumatic pressure in the tube, which allows the printing complex shapes without the tube collapsing. The bending behavior of freestanding glass structures is examined, focusing on the geometric accuracy and temperature profile of the deformation zone as a function of the process parameters. The application of pneumatic pressure allows the control of the printed tube diameter. Several complex tube geometries deposited on the planar substrates as well as freestanding structures are demonstrated.

References

1.
Kreidl
,
N.
,
1990
, “
Recent Applications of Glass Science
,”
J. Non-Cryst. Solids
,
123
(
1–3
), pp.
377
384
.
2.
Hülsenberg
,
D.
,
Harnisch
,
A.
, and
Bismarck
,
A.
,
2008
,
Silicate Glasses: A Class of Amorphous Materials. Chap: Microstructuring of Glasses
, Vol.
87
,
Springer Series in Materials Science Berlin
,
Heidelberg
.
3.
Gutierrez
,
E.
,
2019
, “
Keeping the World Up and Running: Fluke Calibration’s Quartz Bourdon Tube Pressure Sensor
,” Fusion.
4.
Fateri
,
M.
, and
Gebhardt
,
A.
,
2015
, “
Selective Laser Melting of Soda-Lime Glass Powder
,”
Int. J. Appl. Ceram. Technol.
,
12
(
1
), pp.
53
61
.
5.
Khmyrov
,
R. S.
,
Grigoriev
,
S. N.
,
Okunkova
,
A. A.
, and
Gusarov
,
A. V.
,
2014
, “
On the Possibility of Selective Laser Melting of Quartz Glass
,”
Phys. Proc.
,
56
, pp.
345
356
.
6.
Datsiou
,
K.
,
Saleh
,
E.
,
Spirrett
,
F.
,
Goodridge
,
R.
,
Ashcroft
,
I.
, and
Eustice
,
D.
,
2019
, “
Additive Manufacturing of Glass With Laser Powder Bed Fusion
,”
J. Am. Ceram. Soc.
,
102
(
8
), pp.
4410
4414
.
7.
Marchelli
,
G.
,
Prabhakar
,
R.
,
Storti
,
D.
, and
Ganter
,
M.
,
2011
, “
The Guide to Glass 3D Printing: Developments, Methods, Diagnostics, and Results
,”
Rapid Prototyp. J.
,
17
(
3
), pp.
187
194
.
8.
Dumbaugh
,
W.
,
1985
, “
Infrared Transmitting Glasses
,”
Opt. Eng.
,
24
(
2
), p.
242257
.
9.
Kotz
,
F.
,
Arnold
,
K.
,
Bauer
,
W.
,
Schild
,
D.
,
Keller
,
N.
,
Sachsenheimer
,
K.
,
Nargang
,
T.
,
Richter
,
C.
,
Helmer
,
D.
, and
Rapp
,
B. E.
,
2017
, “
Three-Dimensional Printing of Transparent Fused Silica Glass
,”
Nature
,
544
(
7650
), pp.
337
339
.
10.
Wang
,
H.-R.
,
Cima
,
M. J.
,
Kernan
,
B. D.
, and
Sachs
,
E. M.
,
2004
, “
Alumina-Doped Silica Gradient-Index (GRIN) Lenses by Slurry-Based Three-Dimensional Printing (S-3DPTM)
,”
J. Non-Cryst. Solids
,
349
, pp.
360
367
.
11.
Destino
,
J. F.
,
Dudukovic
,
N. A.
,
Johnson
,
M. A.
,
Nguyen
,
D. T.
,
Yee
,
T. D.
,
Egan
,
G. C.
,
Sawvel
,
A. M.
, et al
,
2018
, “
3D Printed Optical Quality Silica and Silica-Titania Glasses From Sol-Gel Feedstocks
,”
Adv. Mater. Technol
,
3
.
12.
Kotz
,
F.
,
Schneider
,
N.
,
Striegel
,
A.
,
Wolfschlager
,
A.
,
Keller
,
N.
,
Worgull
,
M.
,
Baur
,
W.
, et al
,
2018
, “
Glassomer—Processing Fused Silica Glass Like a Polymer
,”
Adv. Mater.
,
30
.
13.
Dylla-Spears
,
R.
,
Yee
,
T.
,
Sasan
,
K.
,
Nguyen
,
D.
,
Dudukovic
,
N.
,
Ortega
,
J.
,
Johnson
,
M.
,
Herrera
,
O.
,
Ryerson
,
F.
, and
Wong
,
L.
,
2020
, “
3D Printed Gradient Index Glass Optics
,”
Sci. Adv.
,
6
(
47
).
14.
Klein
,
J.
,
Stern
,
M.
,
Franchen
,
G.
,
Kayser
,
M.
,
Inamura
,
C.
,
Dave
,
S.
,
Weaver
,
J. C.
, et al
,
2015
, “
Additive Manufacturing of Optically Transparent Glass
,”
3D Print. Add. Mfct.
,
2
(
3
), pp.
92
105
.
15.
Baudet
,
E.
,
Ledemi
,
Y.
,
Larochelle
,
P.
,
Morency
,
S.
, and
Messaddeq
,
Y.
,
2019
, “
3D-Printing of Arsenic Sulfide Chalcogenide Glasses
,”
Opt. Mater. Exp.
,
9
(
5
), pp.
2307
2317
.
16.
Zaki
,
R.
,
Strutynski
,
C.
,
Kaser
,
S.
,
Bernard
,
D.
,
Hauss
,
G.
,
Faessel
,
M.
,
Sabatier
,
J.
, et al
,
2020
, “
Direct 3D-Printing of Phosphate Glass by Fused Deposition Modeling
,”
Mater. Des.
,
194
, pp.
1
9
.
17.
Gal-Or
,
E.
,
Gershoni
,
Y.
,
Scotti
,
G.
,
Nilsson
,
S. M. E.
,
Saarinen
,
J.
,
Jokinen
,
V.
,
Strachan
,
C. J.
,
Boije af Gennäs
,
G.
,
Yli-Kauhaluoma
,
J.
, and
Kotiaho
,
T.
,
2019
, “
Chemical Analysis Using 3D Printed Glass Microfluidics
,”
Anal. Methods
,
11
(
13
), pp.
1802
1810
.
18.
Luo
,
J.
,
Pan
,
H.
, and
Kinzel
,
E. C.
,
2014
, “
Additive Manufacturing of Glass
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061024
.
19.
Capps
,
N.
,
Goldstein
,
J.
,
Rettschlag
,
K.
,
Sleiman
,
K.
,
Jäschke
,
K.
,
Kaiele
,
S.
, and
Kinzel
,
E. C.
,
2022
, “
Direct Laser Heating of the Filament/Substrate Interface in Digital Glass Forming
,”
Mfct. Lett.
,
31
, pp.
106
109
.
20.
Liu
,
C.
,
Oriekhov
,
T.
, and
Fokine
,
M.
,
2021
, “
Rapid Fabrication of Glass Microlens Array Using Laser Assisted 3D Printing
,”
Front. Opt. Laser Sci., p.
FM3C.5
.
21.
Rettschalg
,
K.
,
Holnholz
,
A.
,
Jäschke
,
K.
,
Kaiele
,
S.
, and
Lachmayer
,
R.
,
2020
, “
Laser Glass Deposition of Spheres for Printing Micro Lenses
,”
Proc. CIRP
,
94
, pp.
276
280
.
22.
Luo
,
J.
,
Hostetler
,
J.
,
Gilbert
,
L.
,
Goldstein
,
J.
,
Urbas
,
A.
,
Landers
,
R.
,
Bristow
,
D.
, and
Kinzel
,
E. C.
,
2018
, “
Additive Manufacturing of Transparent Fused Quartz
,”
Opt. Eng.
,
57
(
4
), p.
041408
.
23.
Peters
,
D.
,
Drallmeier
,
J.
,
Bristow
,
D.
,
Landers
,
R.
, and
Kinzel
,
E.
,
2018
, “
Sensing and Control in Glass Additive Manufacturing
,”
Mechatronics
,
56
, pp.
188
197
.
24.
Rettschlag
,
K.
,
Kranert
,
F.
,
Hohnholz
,
A.
,
Wienke
,
A.
,
Stuttmann
,
O.
,
Neumann
,
J.
,
Kracht
,
D.
, and
Lachmayer
,
R.
,
2019
, “
Laser Deposition of Fused Silica Coreless Fibers to Generate Functional Waveguides
,”
Lasers in Manufacturing Conference
,
Munich, Germany
,
June 24–27
, pp.
1
9
.
25.
Tian
,
W.
, and
Chiu
,
W.
,
2004
, “
Temperature Prediction for CO2 Laser Heating of Moving Glass Rods
,”
Opt. Laser Technol.
,
36
(2)
, pp.
131
137
.
26.
Tool
,
A.
,
1945
, “
Relaxation of Stresses in Annealing Glass
,”
J. Res. Natl. Bur. Stand. (U.C.)
.
27.
Hrma
,
P.
,
2008
, “
Arrhenius Model for High-Temperature Glass Viscosity With a Constant Pre-Exponential Factor
,”
J. Non. Cryst. Solids
,
354
(
18
), pp.
1962
1968
.
28.
Xia
,
W.
,
Hsu
,
H.
, and
Kong
,
L.
,
2007
, “
A CFD-Aided Experimental Study on Bending of Micro-Pipettes
,”
J. Mech. Sci. Technol.
,
21
.
29.
ProSciTech Pty Ltd
. “
Information, Properties and Data for Borosilicate Glass
,” Laboratory Resource, https://laboratoryresource.com.au/?navaction=getitem&id=225, Accessed October 8, 2017.
You do not currently have access to this content.