Abstract

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) is one of the most successful conducting polymers for electronic applications. Most commonly, the spin coating process is used to fabricate PEDOT:PSS thin films from an aqueous solution, yet it is unsuitable for fabricating complicated two-dimensional (2D) structures. Extrusion-based additive manufacturing (AM) processes have been investigated for 3D printing PEDOT:PSS-based polymers with free-form architecture. However, such methods imply strict requirements on the rheological properties of materials and, as a result, have limited choices of appropriate materials. In the past, additives have been added to improve the 3D printing processability of PEDOT:PSS materials, which, however, usually deteriorate the electrical conductivity. This article reports a new type of PEDOT:PSS material capable of addressing the previously listed challenges and characterized by high processability and electrical conductivity (72 S/cm). In addition, a novel extrusion-based AM technology, electrostatically-assisted direct ink writing (eDIW), is investigated for printing materials containing PEDOT:PSS. The eDIW method prints lines at micro-scale resolution at an ultra-high speed (1.72 m/s). This combination is often deemed impossible in the framework of classical extrusion-based AM techniques. This work lays the foundation for future explorations of applications of PEDOT:PSS-based conducting polymers in fields that require superb properties and custom geometry, which were conventionally impossible.

References

1.
Heeger
,
A. J.
,
2001
, “
Nobel Lecture: Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials
,”
Rev. Mod. Phys.
,
73
(
3
), pp.
681
700
.
2.
Groenendaal
,
L.
,
Jonas
,
F.
,
Freitag
,
D.
,
Pielartzik
,
H.
, and
Reynolds
,
J. R.
,
2000
, “
Poly(3,4-Ethylenedioxythiophene) and Its Derivatives: Past, Present, and Future
,”
Adv. Mater.
,
12
(
7
), pp.
481
494
.
3.
Dominguez-Alfaro
,
A.
,
Gabirondo
,
E.
,
Alegret
,
N.
,
De León-Almazán
,
C. M.
,
Hernandez
,
R.
,
Vallejo-Illarramendi
,
A.
,
Prato
,
M.
, and
Mecerreyes
,
D.
,
2021
, “
3D Printable Conducting and Biocompatible PEDOT-Graft-PLA Copolymers by Direct Ink Writing
,”
Macromol. Rapid Commun.
,
42
(
12
), p.
e2100100
.
4.
Liu
,
H.
,
Li
,
Q.
,
Zhang
,
S.
,
Yin
,
R.
,
Liu
,
X.
,
He
,
Y.
,
Dai
,
K.
, et al
,
2018
, “
Electrically Conductive Polymer Composites for Smart Flexible Strain Sensors: A Critical Review
,”
J. Mater. Chem. C Mater. Opt. Electron. Devices
,
6
(
45
), pp.
12121
12141
.
5.
Hu
,
F.
,
Xue
,
Y.
,
Xu
,
J.
, and
Lu
,
B.
,
2019
, “
PEDOT-Based Conducting Polymer Actuators
,”
Front. Robot. AI
,
6
, p.
114
.
6.
Lee
,
I.
,
Kim
,
G. W.
,
Yang
,
M.
, and
Kim
,
T.-S.
,
2016
, “
Simultaneously Enhancing the Cohesion and Electrical Conductivity of PEDOT:PSS Conductive Polymer Films Using DMSO Additives
,”
ACS Appl. Mater. Interfaces
,
8
(
1
), pp.
302
310
.
7.
Zeng
,
R.
,
Wang
,
W.
,
Chen
,
M.
,
Wan
,
Q.
,
Wang
,
C.
,
Knopp
,
D.
, and
Tang
,
D.
,
2021
, “
CRISPR-Cas12a-Driven MXene-PEDOT:PSS Piezoresistive Wireless Biosensor
,”
Nano Energy
,
82
, p.
105711
.
8.
Keene
,
S. T.
,
van der Pol
,
T. P. A.
,
Zakhidov
,
D.
,
Weijtens
,
C. H. L.
,
Janssen
,
R. A. J.
,
Salleo
,
A.
, and
van de Burgt
,
Y.
,
2020
, “
Enhancement-Mode PEDOT:PSS Organic Electrochemical Transistors Using Molecular DE-Doping
,”
Adv. Mater.
,
32
(
19
), p.
e2000270
.
9.
Zhao
,
P.
,
Zhang
,
R.
,
Tong
,
Y.
,
Zhao
,
X.
,
Zhang
,
T.
,
Tang
,
Q.
, and
Liu
,
Y.
,
2020
, “
Strain-Discriminable Pressure/Proximity Sensing of Transparent Stretchable Electronic Skin Based on PEDOT:PSS/SWCNT Electrodes
,”
ACS Appl. Mater. Interfaces
,
12
(
49
), pp.
55083
55093
.
10.
Srichan
,
C.
,
Saikrajang
,
T.
,
Lomas
,
T.
,
Jomphoak
,
A.
,
Maturos
,
T.
,
Phokaratkul
,
D.
,
Kerdcharoen
,
T.
, and
Tuantranont
,
A.
,
2009
, “
Inkjet Printing PEDOT:PSS Using Desktop Inkjet Printer
,”
2009 6th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology
,
Chonburi, Thailand
,
May 6–9
.
11.
Dong
,
Q.
,
Zhou
,
Y.
,
Pei
,
J.
,
Liu
,
Z.
,
Li
,
Y.
,
Yao
,
S.
,
Zhang
,
J.
, and
Tian
,
W.
,
2010
, “
All-Spin-Coating Vacuum-Free Processed Semi-Transparent Inverted Polymer Solar Cells With PEDOT:PSS Anode and PAH-D Interfacial Layer
,”
Org. Electron.
,
11
(
7
), pp.
1327
1331
.
12.
Greco
,
F.
,
Zucca
,
A.
,
Taccola
,
S.
,
Menciassi
,
A.
,
Fujie
,
T.
,
Haniuda
,
H.
,
Takeoka
,
S.
,
Dario
,
P.
, and
Mattoli
,
V.
,
2011
, “
Ultra-Thin Conductive Free-Standing PEDOT/PSS Nanofilms
,”
Soft Matter
,
7
(
22
), p.
10642
.
13.
Heo
,
D. N.
,
Lee
,
S.-J.
,
Timsina
,
R.
,
Qiu
,
X.
,
Castro
,
N. J.
, and
Zhang
,
L. G.
,
2019
, “
Development of 3D Printable Conductive Hydrogel With Crystallized PEDOT:PSS for Neural Tissue Engineering
,”
Mater. Sci. Eng. C Mater. Biol. Appl.
,
99
, pp.
582
590
.
14.
Tao
,
Y.
,
Wei
,
C.
,
Liu
,
J.
,
Deng
,
C.
,
Cai
,
S.
, and
Xiong
,
W.
,
2019
, “
Nanostructured Electrically Conductive Hydrogels Obtained via Ultrafast Laser Processing and Self-Assembly
,”
Nanoscale
,
11
(
18
), pp.
9176
9184
.
15.
Scordo
,
G.
,
Bertana
,
V.
,
Scaltrito
,
L.
,
Ferrero
,
S.
,
Cocuzza
,
M.
,
Marasso
,
S. L.
, and
Pirri
,
C. F.
,
2019
, “
A Novel Highly Electrically Conductive Composite Resin for Stereolithography
,”
Mater. Today Commun.
,
19
, pp.
12
17
.
16.
Li
,
H.
,
Mao
,
P.
,
Davis
,
M.
, and
Yu
,
Z.
,
2021
, “
PEDOT: PSS-Polyethylene Oxide Composites for Stretchable and 3D-Printed Thermoelectric Devices
,”
Compos. Commun.
,
23
, p.
100599
.
17.
Shi
,
H.
,
Liu
,
C.
,
Jiang
,
Q.
, and
Xu
,
J.
,
2015
, “
Effective Approaches to Improve the Electrical Conductivity of PEDOT:PSS: A Review
,”
Adv. Electron. Mater.
,
1
(
4
), p.
1500017
.
18.
Yuk
,
H.
,
Lu
,
B.
,
Lin
,
S.
,
Qu
,
K.
,
Xu
,
J.
,
Luo
,
J.
, and
Zhao
,
X.
,
2020
, “
3D Printing of Conducting Polymers
,”
Nat. Commun.
,
11
(
1
), p.
1604
.
19.
Liu
,
J.
,
Mckeon
,
L.
,
Garcia
,
J.
,
Pinilla
,
S.
,
Barwich
,
S.
,
Möbius
,
M.
, and
Nicolosi
,
V.
,
2022
, “
Additive Manufacturing of Ti3C2-MXene-Functionalized Conductive Polymer Hydrogels for Electromagnetic-Interference Shielding
,”
Adv. Mater.
,
34
(
5
), p.
2106253
.
20.
Kim
,
Y. H.
,
Sachse
,
C.
,
Machala
,
M. L.
,
May
,
C.
,
Müller-Meskamp
,
L.
, and
Leo
,
K.
,
2011
, “
Highly Conductive PEDOT:PSS Electrode With Optimized Solvent and Thermal Post-Treatment for ITO-Free Organic Solar Cells
,”
Adv. Funct. Mater.
,
21
(
6
), pp.
1076
1081
.
21.
Hokazono
,
M.
,
Anno
,
H.
, and
Toshima
,
N.
,
2014
, “
Thermoelectric Properties and Thermal Stability of PEDOT:PSS Films on a Polyimide Substrate and Application in Flexible Energy Conversion Devices
,”
J. Electron. Mater.
,
43
(
6
), pp.
2196
2201
.
22.
Lee
,
M.-W.
,
Lee
,
M.-Y.
,
Choi
,
J.-C.
,
Park
,
J.-S.
, and
Song
,
C.-K.
,
2010
, “
Fine Patterning of Glycerol-Doped PEDOT:PSS on Hydrophobic PVP Dielectric With Ink Jet for Source and Drain Electrode of OTFTs
,”
Org. Electron.
,
11
(
5
), pp.
854
859
.
23.
Jin
,
H.-J.
,
Park
,
J.
,
Valluzzi
,
R.
,
Cebe
,
P.
, and
Kaplan
,
D. L.
,
2004
, “
Biomaterial Films of Bombyx Mori Silk Fibroin With Poly(Ethylene Oxide)
,”
Biomacromolecules
,
5
(
3
), pp.
711
717
.
24.
Viidik
,
L.
,
Seera
,
D.
,
Antikainen
,
O.
,
Kogermann
,
K.
,
Heinämäki
,
J.
, and
Laidmäe
,
I.
,
2019
, “
3D-Printability of Aqueous Poly(Ethylene Oxide) Gels
,”
Eur. Polym. J.
,
120
, p.
109206
.
25.
Zheng
,
D.
,
Bai
,
B.
,
He
,
Y.
,
Hu
,
N.
, and
Wang
,
H.
,
2020
, “
Synthesis and Characterization of Dopamine-Modified Ca-Alginate/Poly(N-Isopropylacrylamide) Microspheres for Water Retention and Multi-Responsive Controlled Release of Agrochemicals
,”
Int. J. Biol. Macromol.
,
160
, pp.
518
530
.
26.
Ouyang
,
J.
,
2013
, “
Secondary Doping’ Methods to Significantly Enhance the Conductivity of PEDOT:PSS for Its Application as Transparent Electrode of Optoelectronic Devices
,”
Displays
,
34
(
5
), pp.
423
436
.
27.
Mengistie
,
D. A.
,
Chen
,
C.-H.
,
Boopathi
,
K. M.
,
Pranoto
,
F. W.
,
Li
,
L.-J.
, and
Chu
,
C.-W.
,
2015
, “
Enhanced Thermoelectric Performance of PEDOT:PSS Flexible Bulky Papers by Treatment With Secondary Dopants
,”
ACS Appl. Mater. Interfaces
,
7
(
1
), pp.
94
100
.
28.
Fu
,
K.
,
Lv
,
R.
,
Na
,
B.
,
Zou
,
S.
,
Zeng
,
R.
,
Wang
,
B.
, and
Liu
,
H.
,
2019
, “
Mixed Ion-Electron Conducting PEO/PEDOT: PSS Miscible Blends With Intense Electrochromic Response
,”
Polymer (Guildf.)
,
184
, p.
121900
.
29.
Cao
,
S.
,
Tong
,
X.
,
Dai
,
K.
, and
Xu
,
Q.
,
2019
, “
A Super-Stretchable and Tough Functionalized Boron Nitride/PEDOT:PSS/Poly(N-Isopropylacrylamide) Hydrogel With Self-Healing, Adhesion, Conductive and Photothermal Activity
,”
J. Mater. Chem. A Mater. Energy Sustainable
,
7
(
14
), pp.
8204
8209
.
30.
Park
,
J.-K.
,
Kang
,
T.-G.
,
Kim
,
B.-H.
,
Lee
,
H.-J.
,
Choi
,
H. H.
, and
Yook
,
J.-G.
,
2018
, “
Real-Time Humidity Sensor Based on Microwave Resonator Coupled With PEDOT:PSS Conducting Polymer Film
,”
Sci. Rep.
,
8
(
1
), p.
439
.
31.
McDonald
,
M. B.
, and
Hammond
,
P. T.
,
2018
, “
Efficient Transport Networks in a Dual Electron/Lithium-Conducting Polymeric Composite for Electrochemical Applications
,”
ACS Appl. Mater. Interfaces
,
10
(
18
), pp.
15681
15690
.
32.
Zhang
,
H.
,
Yue
,
M.
,
Wang
,
T.
,
Wang
,
J.
,
Wu
,
X.
, and
Yang
,
S.
,
2021
, “
Conductive Hydrogel-Based Flexible Strain Sensors With Superior Chemical Stability and Stretchability for Mechanical Sensing in Corrosive Solvents
,”
New J. Chem.
,
45
(
10
), pp.
4647
4657
.
33.
Jiang
,
Y.
,
Wang
,
X.
,
Plog
,
J.
,
Yarin
,
A. L.
, and
Pan
,
Y.
,
2021
, “
Electrowetting-Assisted Direct Ink Writing for Low-Viscosity Liquids
,”
J. Manuf. Process.
,
69
, pp.
173
180
.
34.
Plog
,
J.
,
Jiang
,
Y.
,
Pan
,
Y.
, and
Yarin
,
A. L.
,
2021
, “
Electrostatically-Assisted Direct Ink Writing for Additive Manufacturing
,”
Addit. Manuf.
,
39
, p.
101644
.
You do not currently have access to this content.