Abstract

Precision medicine is an emerging healthcare delivery approach that considers variability between patients, such as genetic makeups, in contrast to the current one-size-fits-all approach that is designed to treat the average patient. The White House launched the Precision Medicine Initiative in 2015, starting an endeavor to reshape healthcare delivery. To translate the concept of precision medicine from the bench to practice, advanced manufacturing will play an integral part, including the fabrication of personalized drugs and drug delivery devices and drug screening platforms. These products are highly customized and require robust yet flexible manufacturing systems. The advanced manufacturing field has rapidly evolved in the past five years. In this state-of-the-art review, products manufactured for precision medicine will be introduced, followed by a brief review of processing materials and their characteristics. A review on different manufacturing processes applicable to those aforementioned products is provided. The current status of the development of regulatory submission and quality control considerations are also discussed. Finally, this paper presents a future outlook on manufacturing processes used for precision medicine.

References

1.
Hamburg
,
M. A.
,
2013
, “
Paving the Way for Personalized Medicine: FDA’s role in a new Era of Medical Product Development
,” https://www.fdanews.com/ext/resources/files/10/10-28-13-Personalized-Medicine.pdf, Accessed November 10, 2021.
2.
Collins
,
F. S.
, and
Varmus
,
H.
,
2015
, “
A New Initiative on Precision Medicine
,”
N. Engl. J. Med.
,
372
(
9
), pp.
793
795
.
3.
Alomari
,
M.
,
Mohamed
,
F. H.
,
Basit
,
A. W.
, and
Gaisford
,
S.
,
2015
, “
Personalised Dosing: Printing a Dose of One’s Own Medicine
,”
Int. J. Pharm.
,
494
(
2
), pp.
568
577
.
4.
Hamburg
,
M. A.
, and
Collins
,
F. S.
,
2010
, “
The Path to Personalized Medicine
,”
N. Engl. J. Med.
,
363
(
4
), pp.
301
304
.
5.
Florence
,
A. T.
, and
Lee
,
V. H. L.
,
2011
, “
Personalised Medicines: More Tailored Drugs, More Tailored Delivery
,”
Int. J. Pharm.
,
415
(
1–2
), pp.
29
33
.
6.
Hettesheimer
,
T.
,
Hirzel
,
S.
, and
Roß
,
H. B.
,
2018
, “
Energy Savings Through Additive Manufacturing: an Analysis of Selective Laser Sintering for Automotive and Aircraft Components
,”
Energy Effic.
,
11
(
5
), pp.
1227
1245
.
7.
George
,
M.
,
Aroom
,
K. R.
,
Hawes
,
H. G.
,
Gill
,
B. S.
, and
Love
,
J.
,
2017
, “
3D Printed Surgical Instruments: The Design and Fabrication Process
,”
World J. Surg.
,
41
(
1
), pp.
314
319
.
8.
Di Giacomo
,
G. D. A. P.
,
Cury
,
P. R.
,
da Silva
,
A. M.
,
da Silva
,
J. V. L.
, and
Ajzen
,
S. A.
,
2016
, “
A Selective Laser Sintering Prototype Guide Used to Fabricate Immediate Interim Fixed Complete Arch Prostheses in Flapless Dental Implant Surgery: Technique Description and Clinical Results
,”
J. Prosthet. Dent.
,
116
(
6
), pp.
874
879
.
9.
Revilla-León
,
M.
, and
Özcan
,
M.
,
2017
, “
Additive Manufacturing Technologies Used for 3D Metal Printing in Dentistry
,”
Curr. Oral Health Rep.
,
4
(
3
), pp.
201
208
.
10.
Chen
,
R.
,
Chang
,
R. C.
,
Tai
,
B.
,
Huang
,
Y.
,
Ozdoganlar
,
B.
,
Li
,
W.
, and
Shih
,
A.
,
2020
, “
Biomedical Manufacturing: A Review of the Emerging Research and Applications
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p.
110807
.
11.
Breitkreutz
,
J.
, and
Boos
,
J.
,
2007
, “
Paediatric and Geriatric Drug Delivery
,”
Expert Opin. Drug Delivery
,
4
(
1
), pp.
37
45
.
12.
Peek
,
B. T.
,
Al-Achi
,
A.
, and
Coombs
,
S. J.
,
2002
, “
Accuracy of Tablet Splitting by Elderly Patients
,”
JAMA
,
288
(
4
), pp.
451
452
.
13.
Habib
,
W. A.
,
Alanizi
,
A. S.
,
Abdelhamid
,
M. M.
, and
Alanizi
,
F. K.
,
2014
, “
Accuracy of Tablet Splitting: Comparison Study Between Hand Splitting and Tablet Cutter
,”
Saudi Pharm. J.
,
22
(
5
), pp.
454
459
.
14.
McDevitt
,
J. T.
,
Gurst
,
A. H.
, and
Chen
,
Y.
,
1998
, “
Accuracy of Tablet Splitting
,”
Pharmacotherapy
,
18
(
1
), pp.
193
197
.
15.
Hill
,
S.
,
Varker
,
A. S.
,
Karlage
,
K.
, and
Myrdal
,
P. B.
,
2009
, “
Analysis of Drug Content and Weight Uniformity for Half-Tablets of 6 Commonly Split Medications
,”
J. Manag. Care Pharm.
,
15
(
3
), pp.
253
261
.
16.
Scoutaris
,
N.
,
Ross
,
S. A.
, and
Douroumis
,
D.
,
2018
, “
3D Printed “Starmix” Drug Loaded Dosage Forms for Paediatric Applications
,”
Pharm. Res.
,
35
(
2
), p.
34
.
17.
Goyanes
,
A.
,
Scarpa
,
M.
,
Kamlow
,
M.
,
Gaisford
,
S.
,
Basit
,
A. W.
, and
Orlu
,
M.
,
2017
, “
Patient Acceptability of 3D Printed Medicines
,”
Int. J. Pharm.
,
530
(
1–2
), pp.
71
78
.
18.
Goyanes
,
A.
,
Madla
,
C. M.
,
Umerji
,
A.
,
Duran Piñeiro
,
G.
,
Giraldez Montero
,
J. M.
,
Lamas Diaz
,
M. J.
,
Gonzalez Barcia
,
M.
, et al
,
2019
, “
Automated Therapy Preparation of Isoleucine Formulations Using 3D Printing for the Treatment of MSUD: First Single-Centre, Prospective, Crossover Study in Patients
,”
Int. J. Pharm.
,
567
, p.
118497
.
19.
Rodríguez-Pombo
,
L.
,
Awad
,
A.
,
Basit
,
A. W.
,
Alvarez-Lorenzo
,
C.
, and
Goyanes
,
A.
,
2022
, “
Innovations in Chewable Formulations: The Novelty and Applications of 3D Printing in Drug Product Design
,”
Pharmaceutics
,
14
(
8
), p.
1732
.
20.
Yu
,
D.-G.
,
Shen
,
X. X.
,
Branford-White
,
C.
,
Zhu
,
L. M.
,
White
,
K.
, and
Yang
,
X. L.
,
2009
, “
Novel Oral Fast-disintegrating Drug Delivery Devices With Predefined Inner Structure Fabricated by Three-Dimensional Printing
,”
J. Pharm. Pharmacol.
,
61
(
3
), pp.
323
329
.
21.
Sadia
,
M.
,
Arafat
,
B.
,
Ahmed
,
W.
,
Forbes
,
R. T.
, and
Alhnan
,
M. A.
,
2018
, “
Channelled Tablets: An Innovative Approach to Accelerating Drug Release From 3D Printed Tablets
,”
J. Controlled Release
,
269
, pp.
355
363
.
22.
Solanki
,
N. G.
,
Tahsin
,
M.
,
Shah
,
A. V.
, and
Serajuddin
,
A. T. M.
,
2018
, “
Formulation of 3D Printed Tablet for Rapid Drug Release by Fused Deposition Modeling: Screening Polymers for Drug Release, Drug-Polymer Miscibility and Printability
,”
J. Pharm. Sci.
,
107
(
1
), pp.
390
401
.
23.
Yu
,
D. G.
,
Branford-White
,
C.
,
Yang
,
Y.-C.
,
Zhu
,
L. M.
,
Welbeck
,
E. W.
, and
Yang
,
X. L.
,
2009
, “
A Novel Fast Disintegrating Tablet Fabricated by Three-Dimensional Printing
,”
Drug Dev. Ind. Pharm.
,
35
(
12
), pp.
1530
1536
.
24.
Jamróz
,
W.
,
Kurek
,
M.
,
Łyszczarz
,
E.
,
Szafraniec
,
J.
,
Knapik-Kowalczuk
,
J.
,
Syrek
,
K.
,
Paluch
,
M.
, and
Jachowicz
,
R.
,
2017
, “
3D Printed Orodispersible Films With Aripiprazole
,”
Int. J. Pharm.
,
533
(
2
), pp.
413
420
.
25.
Masnoon
,
N.
,
Shakib
,
S.
,
Kalisch-Ellett
,
L.
, and
Caughey
,
G. E.
,
2017
, “
What Is Polypharmacy? A Systematic Review of Definitions
,”
BMC Geriatr.
,
17
(
1
), p.
230
.
26.
Maher
,
R. L.
,
Hanlon
,
J.
, and
Hajjar
,
E. R.
,
2014
, “
Clinical Consequences of Polypharmacy in Elderly
,”
Expert Opin. Drug Saf.
,
13
(
1
), pp.
57
65
.
27.
Khaled
,
S. A.
,
Burley
,
J. C.
,
Alexander
,
M. R.
,
Yang
,
J.
, and
Roberts
,
C. J.
,
2015
, “
3D Printing of Five-in-One Dose Combination Polypill With Defined Immediate and Sustained Release Profiles
,”
J. Controlled Release
,
217
, pp.
308
314
.
28.
Robles-Martinez
,
P.
,
Xu
,
X.
,
Trenfield
,
S. J.
,
Awad
,
A.
,
Goyanes
,
A.
,
Telford
,
R.
,
Basit
,
A. W.
, and
Gaisford
,
S.
,
2019
, “
3D Printing of a Multi-Layered Polypill Containing six Drugs Using a Novel Stereolithographic Method
,”
Pharmaceutics
,
11
(
6
), p.
274
.
29.
Okwuosa
,
T. C.
,
Pereira
,
B. C.
,
Arafat
,
B.
,
Cieszynska
,
M.
,
Isreb
,
A.
, and
Alhnan
,
M. A.
,
2017
, “
Fabricating a Shell-Core Delayed Release Tablet Using Dual FDM 3d Printing for Patient-Centred Therapy
,”
Pharm. Res.
,
34
(
2
), pp.
427
437
.
30.
Skowyra
,
J.
,
Pietrzak
,
K.
, and
Alhnan
,
M. A.
,
2015
, “
Fabrication of Extended-Release Patient-Tailored Prednisolone Tablets via Fused Deposition Modelling (FDM) 3D Printing
,”
Eur. J. Pharm. Sci.
,
68
, pp.
11
17
.
31.
Goyanes
,
A.
,
Chang
,
H.
,
Sedough
,
D.
,
Hatton
,
G. B.
,
Wang
,
J.
,
Buanz
,
A.
,
Buanz
,
A.
,
Gaisford
,
S.
, and
Basit
,
A. W.
,
2015
, “
Fabrication of Controlled-Release Budesonide Tablets via Desktop (FDM) 3D Printing
,”
Int. J. Pharm.
,
496
(
2
), pp.
414
420
.
32.
Arden
,
N. S.
,
Fisher
,
A. C.
,
Tyner
,
K.
,
Yu
,
L. X.
,
Lee
,
S. L.
, and
Kopcha
,
M.
,
2021
, “
Industry 4.0 for Pharmaceutical Manufacturing: Preparing for the Smart Factories of the Future
,”
Int. J. Pharm.
,
602
, p.
120554
.
33.
Awad
,
A.
,
Trenfield
,
S. J.
,
Pollard
,
T. D.
,
Ong
,
J. J.
,
Elbadawi
,
M.
,
McCoubrey
,
L. E.
,
Goyanes
,
A.
,
Gaisford
,
S.
, and
Basit
,
A. W.
,
2021
, “
Connected Healthcare: Improving Patient Care Using Digital Health Technologies
,”
Adv. Drug Delivery Rev.
,
178
, p.
113958
.
34.
Nørfeldt
,
L.
,
Bøtker
,
J.
,
Edinger
,
M.
,
Genina
,
N.
, and
Rantanen
,
J.
,
2019
, “
Cryptopharmaceuticals: Increasing the Safety of Medication by a Blockchain of Pharmaceutical Products
,”
J. Pharm. Sci.
,
108
(
9
), pp.
2838
2841
.
35.
Muwaffak
,
Z.
,
Goyanes
,
A.
,
Clark
,
V.
,
Basit
,
A. W.
,
Hilton
,
S. T.
, and
Gaisford
,
S.
,
2017
, “
Patient-Specific 3D Scanned and 3D Printed Antimicrobial Polycaprolactone Wound Dressings
,”
Int. J. Pharm.
,
527
(
1–2
), pp.
161
170
.
36.
Goyanes
,
A.
,
Det-Amornrat
,
U.
,
Wang
,
J.
,
Basit
,
A. W.
, and
Gaisford
,
S.
,
2016
, “
3D Scanning and 3D Printing as Innovative Technologies for Fabricating Personalized Topical Drug Delivery Systems
,”
J. Controlled Release
,
234
, pp.
41
48
.
37.
Binedell
,
T.
,
Meng
,
E.
, and
Subburaj
,
K.
,
2020
, “
Design and Development of a Novel 3D-Printed Non-metallic Self-locking Prosthetic Arm for a Forequarter Amputation
,”
Prosthet. Orthot. Int.
,
45
(
1
), pp.
94
99
.
38.
Liang
,
K.
,
Carmone
,
S.
,
Brambilla
,
D.
, and
Leroux
,
J.-C.
,
2018
, “
3D Printing of a Wearable Personalized Oral Delivery Device: A First-in-Human Study
,”
Sci. Adv.
,
4
(
5
), p.
eaat2544
.
39.
Xu
,
X.
,
Seijo-Rabina
,
A.
,
Awad
,
A.
,
Rial
,
C.
,
Gaisford
,
S.
,
Basit
,
A. W.
, and
Goyanes
,
A.
,
2021
, “
Smartphone-Enabled 3D Printing of Medicines
,”
Int. J. Pharm.
,
609
, p.
121199
.
40.
Elbadawi
,
M.
,
McCoubrey
,
L. E.
,
Gavins
,
F. K. H.
,
Ong
,
J. J.
,
Goyanes
,
A.
,
Gaisford
,
S.
, and
Basit
,
A. W.
,
2021
, “
Harnessing Artificial Intelligence for the Next Generation of 3D Printed Medicines
,”
Adv. Drug Delivery Rev.
,
175
, p.
113805
.
41.
Elbadawi
,
M.
,
McCoubrey
,
L. E.
,
Gavins
,
F. K. H.
,
Ong
,
J. J.
,
Goyanes
,
A.
,
Gaisford
,
S.
, and
Basit
,
A. W.
,
2021
, “
Disrupting 3D Printing of Medicines With Machine Learning
,”
Trends Pharmacol. Sci.
,
42
(
9
), pp.
745
757
.
42.
McCoubrey
,
L. E.
,
Elbadawi
,
M.
,
Orlu
,
M.
,
Gaisford
,
S.
, and
Basit
,
A. W.
,
2021
, “
Harnessing Machine Learning for Development of Microbiome Therapeutics
,”
Gut Microbes
,
13
(
1
), p.
1872323
.
43.
Elbadawi
,
M.
,
Gaisford
,
S.
, and
Basit
,
A. W.
,
2021
, “
Advanced Machine-Learning Techniques in Drug Discovery
,”
Drug Discov. Today
,
26
(
3
), pp.
769
777
.
44.
McCoubrey
,
L. E.
,
Elbadawi
,
M.
,
Orlu
,
M.
,
Gaisford
,
S.
, and
Basit
,
A. W.
,
2021
, “
Machine Learning Uncovers Adverse Drug Effects on Intestinal Bacteria
,”
Pharmaceutics
,
13
(
7
), p.
1026
.
45.
Grof
,
Z.
, and
Štěpánek
,
F.
,
2021
, “
Artificial Intelligence Based Design of 3D-Printed Tablets for Personalised Medicine
,”
Comput. Chem. Eng.
,
154
, p.
107492
.
46.
Ong
,
J. J.
,
Pollard
,
T. D.
,
Goyanes
,
A.
,
Gaisford
,
S.
,
Elbadawi
,
M.
, and
Basit
,
A. W.
,
2021
, “
Optical Biosensors—Illuminating the Path to Personalized Drug Dosing
,”
Biosens. Bioelectron.
,
188
, p.
113331
.
47.
Pollard
,
T. D.
,
Ong
,
J. J.
,
Goyanes
,
A.
,
Orlu
,
M.
,
Gaisford
,
S.
,
Elbadawi
,
M.
, and
Basit
,
A. W.
,
2021
, “
Electrochemical Biosensors: A Nexus for Precision Medicine
,”
Drug Discov. Today
,
26
(
1
), pp.
69
79
.
48.
Li
,
P.
,
Lee
,
G.-H.
,
Kim
,
S. Y.
,
Kwon
,
S. Y.
,
Kim
,
H.-R.
, and
Park
,
S.
,
2021
, “
From Diagnosis to Treatment: Recent Advances in Patient-Friendly Biosensors and Implantable Devices
,”
ACS Nano
,
15
(
2
), pp.
1960
2004
.
49.
Yang
,
Y.
,
Song
,
Y.
,
Bo
,
X.
,
Min
,
J.
,
Pak
,
O. S.
,
Zhu
,
L.
,
Wang
,
M.
, et al
,
2020
, “
A Laser-Engraved Wearable Sensor for Sensitive Detection of Uric Acid and Tyrosine in Sweat
,”
Nat. Biotechnol.
,
38
(
2
), pp.
217
224
.
50.
Kim
,
J.
,
Campbell
,
A. S.
,
de Ávila
,
B. E.-F.
, and
Wang
,
J.
,
2019
, “
Wearable Biosensors for Healthcare Monitoring
,”
Nat. Biotechnol.
,
37
(
4
), pp.
389
406
.
51.
Zanaboni
,
P.
, and
Wootton
,
R.
,
2012
, “
Adoption of Telemedicine: From Pilot Stage to Routine Delivery
,”
BMC Med. Inf. Decis. Making
,
12
(
1
), p.
1
.
52.
Awad
,
A.
,
Trenfield
,
S. J.
,
Goyanes
,
A.
,
Gaisford
,
S.
, and
Basit
,
A. W.
,
2018
, “
Reshaping Drug Development Using 3D Printing
,”
Drug Discov. Today
,
23
(
8
), pp.
1547
1555
.
53.
ASTM Committee F42 on Additive Manufacturing Technologies. Subcommittee F42
,
2012
, “
Standard Terminology for Additive Manufacturing—General Principles—Terminology
,” ASTM International.
54.
Trivedi
,
M.
,
Jee
,
J.
,
Silva
,
S.
,
Blomgren
,
C.
,
Pontinha
,
V. M.
,
Dixon
,
D. L.
,
Van Tassel
,
B.
, et al
,
2018
, “
Additive Manufacturing of Pharmaceuticals for Precision Medicine Applications: A Review of the Promises and Perils in Implementation
,”
Addit. Manuf.
,
23
, pp.
319
328
.
55.
Borandeh
,
S.
,
van Bochove
,
B.
,
Teotia
,
A.
, and
Seppälä
,
J.
,
2021
, “
Polymeric Drug Delivery Systems by Additive Manufacturing
,”
Adv. Drug Delivery Rev.
,
173
, pp.
349
373
.
56.
Cui
,
M.
,
Pan
,
H.
,
Su
,
Y.
,
Fang
,
D.
,
Qiao
,
S.
,
Ding
,
P.
, and
Pan
,
W.
,
2021
, “
Opportunities and Challenges of Three-Dimensional Printing Technology in Pharmaceutical Formulation Development
,”
Acta Pharm. Sin. B
,
11
(
8
), pp.
2488
2504
.
57.
Cui
,
M.
,
Pan
,
H.
,
Fang
,
D.
,
Qiao
,
S.
,
Wang
,
S.
, and
Pan
,
W.
,
2020
, “
Fabrication of High Drug Loading Levetiracetam Tablets Using Semi-solid Extrusion 3D Printing
,”
J. Drug Delivery Sci. Technol.
,
57
, p.
101683
.
58.
Tan
,
Y. J. N.
,
Yong
,
W. P.
,
Low
,
H. R.
,
Kochhar
,
J. S.
,
Khanolkar
,
J.
,
Lim
,
T. S. E.
,
Sun
,
Y.
,
Wong
,
J. Z. E.
, and
Soh
,
S.
,
2021
, “
Customizable Drug Tablets With Constant Release Profiles via 3D Printing Technology
,”
Int. J. Pharm.
,
598
, p.
120370
.
59.
Johannesson
,
J.
,
Khan
,
J.
,
Hubert
,
M.
,
Teleki
,
A.
, and
Bergström
,
C. A. S.
,
2021
, “
3D-Printing of Solid Lipid Tablets From Emulsion Gels
,”
Int. J. Pharm.
,
597
, p.
120304
.
60.
Borujeni
,
S. H.
,
Mirdamadian
,
S. Z.
,
Varshosaz
,
J.
, and
Taheri
,
A.
,
2020
, “
Three-Dimensional (3D) Printed Tablets Using Ethyl Cellulose and Hydroxypropyl Cellulose to Achieve Zero Order Sustained Release Profile
,”
Cellulose
,
27
(
3
), pp.
1573
1589
.
61.
Melocchi
,
A.
,
Parietti
,
F.
,
Maccagnan
,
S.
,
Ortenzi
,
M. A.
,
Antenucci
,
S.
,
Briatico-Vangosa
,
F.
,
Maroni
,
A.
,
Gazzaniga
,
A.
, and
Zema
,
L.
,
2018
, “
Industrial Development of a 3D-Printed Nutraceutical Delivery Platform in the Form of a Multicompartment hpc Capsule
,”
AAPS PharmSciTech
,
19
(
8
), pp.
3343
3354
.
62.
Czölderová
,
M.
,
Behúl
,
M.
,
Filip
,
J.
,
Zajíček
,
P.
,
Grabic
,
R.
,
Vojs-Staňová
,
A.
,
Gál
,
M.
, et al.
,
2018
, “
3D Printed Polyvinyl Alcohol Ferrate (VI) Capsules: Effective Means for the Removal of Pharmaceuticals and Illicit Drugs From Wastewater
,”
Chem. Eng. J.
,
349
, pp.
269
275
.
63.
Gupta
,
M. K.
,
Meng
,
F.
,
Johnson
,
B. N.
,
Kong
,
Y. L.
,
Tian
,
L.
,
Yeh
,
Y.-W.
,
Masters
,
N.
,
Singamaneni
,
S.
, and
McAlpine
,
M. C.
,
2015
, “
3D Printed Programmable Release Capsules
,”
Nano Lett.
,
15
(
8
), pp.
5321
5329
.
64.
Eleftheriadis
,
G. K.
,
Ritzoulis
,
C.
,
Bouropoulos
,
N.
,
Tzetzis
,
D.
,
Andreadis
,
D. A.
,
Boetker
,
J.
,
Rantanen
,
J.
, and
Fatouros
,
D. G.
,
2019
, “
Unidirectional Drug Release From 3D Printed Mucoadhesive Buccal Films Using FDM Technology: In Vitro and ex Vivo Evaluation
,”
Eur. J. Pharm. Biopharm.
,
144
, pp.
180
192
.
65.
Ehtezazi
,
T.
,
Algellay
,
M.
,
Islam
,
Y.
,
Roberts
,
M.
,
Dempster
,
N. M.
, and
Sarker
,
S. D.
,
2018
, “
The Application of 3D Printing in the Formulation of Multilayered Fast Dissolving Oral Films
,”
J. Pharm. Sci.
,
107
(
4
), pp.
1076
1085
.
66.
Musazzi
,
U. M.
,
Selmin
,
F.
,
Ortenzi
,
M. A.
,
Mohammed
,
G. K.
,
Franzé
,
S.
,
Minghetti
,
P.
, and
Cilurzo
,
F.
,
2018
, “
Personalized Orodispersible Films by Hot Melt Ram Extrusion 3D Printing
,”
Int. J. Pharm.
,
551
(
1–2
), pp.
52
59
.
67.
Fina
,
F.
,
Goyanes
,
A.
,
Rowland
,
M.
,
Gaisford
,
S.
, and
Basit
,
A. W.
,
2020
, “
3D Printing of Tunable Zero-Order Release Printlets
,”
Polymers
,
12
(
8
), p.
1769
.
68.
Januskaite
,
P.
,
Xu
,
X.
,
Ranmal
,
S. R.
,
Gaisford
,
S.
,
Basit
,
A. W.
,
Tuleu
,
C.
, and
Goyanes
,
A.
,
2020
, “
I Spy With My Little Eye: A Paediatric Visual Preferences Survey of 3D Printed Tablets
,”
Pharmaceutics
,
12
(
11
), p.
1100
.
69.
Martinez
,
P. R.
,
Goyanes
,
A.
,
Basit
,
A. W.
, and
Gaisford
,
S.
,
2018
, “
Influence of Geometry on the Drug Release Profiles of Stereolithographic (SLA) 3D-Printed Tablets
,”
AAPS PharmSciTech
,
19
(
8
), pp.
3355
3361
.
70.
Goyanes
,
A.
,
Robles Martinez
,
P.
,
Buanz
,
A.
,
Basit
,
A. W.
, and
Gaisford
,
S.
,
2015
, “
Effect of Geometry on Drug Release From 3D Printed Tablets
,”
Int. J. Pharm.
,
494
(
2
), pp.
657
663
.
71.
Fina
,
F.
,
Goyanes
,
A.
,
Madla
,
C. M.
,
Awad
,
A.
,
Trenfield
,
S. J.
,
Kuek
,
J. M.
,
Patel
,
P.
,
Gaisford
,
S.
, and
Basit
,
A. W.
,
2018
, “
3D Printing of Drug-Loaded Gyroid Lattices Using Selective Laser Sintering
,”
Int. J. Pharm.
,
547
(
1–2
), pp.
44
52
.
72.
Öblom
,
H.
,
Sjöholm
,
E.
,
Rautamo
,
M.
, and
Sandler
,
N.
,
2019
, “
Towards Printed Pediatric Medicines in Hospital Pharmacies: Comparison of 2D and 3D-Printed Orodispersible Warfarin Films With Conventional Oral Powders in Unit Dose Sachets
,”
Pharmaceutics
,
11
(
7
), p.
334
.
73.
Nober
,
C.
,
Manini
,
G.
,
Carlier
,
E.
,
Raquez
,
J.-M.
,
Benali
,
S.
,
Dubois
,
P.
,
Amighi
,
K.
, and
Goole
,
J.
,
2019
, “
Feasibility Study Into the Potential Use of Fused-Deposition Modeling to Manufacture 3D-Printed Enteric Capsules in Compounding Pharmacies
,”
Int. J. Pharm.
,
569
, p.
118581
.
74.
Goyanes
,
A.
,
Buanz
,
A. B. M.
,
Basit
,
A. W.
, and
Gaisford
,
S.
,
2014
, “
Fused-filament 3D Printing (3DP) for Fabrication of Tablets
,”
Int. J. Pharm.
,
476
(
1–2
), pp.
88
92
.
75.
Isreb
,
A.
,
Baj
,
K.
,
Wojsz
,
M.
,
Isreb
,
M.
,
Peak
,
M.
, and
Alhnan
,
M. A.
,
2019
, “
3D Printed Oral Theophylline Doses With Innovative ‘Radiator-Like’ Design: Impact of Polyethylene Oxide (PEO) Molecular Weight
,”
Int. J. Pharm.
,
564
, pp.
98
105
.
76.
Vo
,
A. Q.
,
Zhang
,
J.
,
Nyavanandi
,
D.
,
Bandari
,
S.
, and
Repka
,
M. A.
,
2020
, “
Hot Melt Extrusion Paired Fused Deposition Modeling 3D Printing to Develop Hydroxypropyl Cellulose Based Floating Tablets of Cinnarizine
,”
Carbohydr. Polym.
,
246
, p.
116519
.
77.
Fanous
,
M.
,
Gold
,
S.
,
Muller
,
S.
,
Hirsch
,
S.
,
Ogorka
,
J.
, and
Imanidis
,
G.
,
2020
, “
Simplification of Fused Deposition Modeling 3D-Printing Paradigm: Feasibility of 1-Step Direct Powder Printing for Immediate Release Dosage Form Production
,”
Int. J. Pharm.
,
578
, p.
119124
.
78.
Jamróz
,
W.
,
Pyteraf
,
J.
,
Kurek
,
M.
,
Knapik-Kowalczuk
,
J.
,
Szafraniec-Szczęsny
,
J.
,
Jurkiewicz
,
K.
,
Leszczyński
,
B.
,
Wróbel
,
A.
,
Paluch
,
M.
, and
Jachowicz
,
R.
,
2020
, “
Multivariate Design of 3D Printed Immediate-Release Tablets With Liquid Crystal-Forming Drug—Itraconazole
,”
Materials
,
13
(
21
), p.
4961
.
79.
Yang
,
Y.
,
Xu
,
Y.
,
Wei
,
S.
, and
Shan
,
W.
,
2021
, “
Oral Preparations With Tunable Dissolution Behavior Based on Selective Laser Sintering Technique
,”
Int. J. Pharm.
,
593
, p.
120127
.
80.
Gioumouxouzis
,
C. I.
,
Tzimtzimis
,
E.
,
Katsamenis
,
O. L.
,
Dourou
,
A.
,
Markopoulou
,
C.
,
Bouropoulos
,
N.
,
Tzetzis
,
D.
, and
Fatouros
,
D. G.
,
2020
, “
Fabrication of an Osmotic 3D Printed Solid Dosage Form for Controlled Release of Active Pharmaceutical Ingredients
,”
Eur. J. Pharm. Sci.
,
143
, p.
105176
.
81.
Tan
,
D. K.
,
Maniruzzaman
,
M.
, and
Nokhodchi
,
A.
,
2020
, “
Development and Optimisation of Novel Polymeric Compositions for Sustained Release Theophylline Caplets (PrintCap) via FDM 3D Printing
,”
Polymers
,
12
(
1
), p.
27
.
82.
Linares
,
V.
,
Casas
,
M.
, and
Caraballo
,
I.
,
2019
, “
Printfills: 3D Printed Systems Combining Fused Deposition Modeling and Injection Volume Filling. Application to Colon-Specific Drug Delivery
,”
Eur. J. Pharm. Biopharm.
,
134
, pp.
138
143
.
83.
Goyanes
,
A.
,
Fina
,
F.
,
Martorana
,
A.
,
Sedough
,
D.
,
Gaisford
,
S.
, and
Basit
,
A. W.
,
2017
, “
Development of Modified Release 3D Printed Tablets (Printlets) With Pharmaceutical Excipients Using Additive Manufacturing
,”
Int. J. Pharm.
,
527
(
1–2
), pp.
21
30
.
84.
Xu
,
X.
,
Robles-Martinez
,
P.
,
Madla
,
C. M.
,
Joubert
,
F.
,
Goyanes
,
A.
,
Basit
,
A. W.
,
Gaisford
,
S.
,
2020
, “
Stereolithography (SLA) 3D Printing of an Antihypertensive Polyprintlet: Case Study of an Unexpected Photopolymer-Drug Reaction
,”
Addit. Manuf.
,
33
, p.
101071
.
85.
Pereira
,
B. C.
,
Isreb
,
A.
,
Isreb
,
M.
,
Forbes
,
R. T.
,
Oga
,
E. F.
, and
Alhnan
,
M. A.
,
2020
, “
Additive Manufacturing of a Point-of-Care “Polypill:” Fabrication of Concept Capsules of Complex Geometry With Bespoke Release Against Cardiovascular Disease
,”
Adv. Healthcare Mater.
,
9
(
13
), p.
2000236
.
86.
Pereira
,
B. C.
,
Isreb
,
A.
,
Forbes
,
R. T.
,
Dores
,
F.
,
Habashy
,
R.
,
Petit
,
J.-B.
,
Alhnan
,
M. A.
, and
Oga
,
E. F.
,
2019
, “
‘Temporary Plasticiser’: A Novel Solution to Fabricate 3D Printed Patient-Centred Cardiovascular ‘Polypill’ Architectures
,”
Eur. J. Pharm. Biopharm.
,
135
, pp.
94
103
.
87.
Haring
,
A. P.
,
Tong
,
Y.
,
Halper
,
J.
, and
Johnson
,
B. N.
,
2018
, “
Programming of Multicomponent Temporal Release Profiles in 3D Printed Polypills via Core–Shell, Multilayer, and Gradient Concentration Profiles
,”
Adv. Healthcare Mater.
,
7
(
16
), p.
1800213
.
88.
Trenfield
,
S. J.
,
Tan
,
H. X.
,
Goyanes
,
A.
,
Wilsdon
,
D.
,
Rowland
,
M.
,
Gaisford
,
S.
, and
Basit
,
A. W.
,
2020
, “
Non-Destructive Dose Verification of Two Drugs Within 3D Printed Polyprintlets
,”
Int. J. Pharm.
,
577
, p.
119066
.
89.
Awad
,
A.
,
Fina
,
F.
,
Trenfield
,
S. J.
,
Patel
,
P.
,
Goyanes
,
A.
,
Gaisford
,
S.
, and
Basit
,
A.
,
2019
, “
3D Printed Pellets (Miniprintlets): A Novel, Multi-drug, Controlled Release Platform Technology
,”
Pharmaceutics
,
11
(
4
), p.
148
.
90.
Tabriz
,
A. G.
,
Fullbrook
,
D. H. G.
,
Vilain
,
L.
,
Derrar
,
Y.
,
Nandi
,
U.
,
Grau
,
C.
,
Morales
,
A.
,
Hooper
,
G.
,
Hiezl
,
Z.
, and
Douroumis
,
D.
,
2021
, “
Personalised Tasted Masked Chewable 3D Printed Fruit-Chews for Paediatric Patients
,”
Pharmaceutics
,
13
(
8
), p.
1301
.
91.
Awad
,
A.
,
Yao
,
A.
,
Trenfield
,
S. J.
,
Goyanes
,
A.
,
Gaisford
,
S.
, and
Basit
,
A. W.
,
2020
, “
3D Printed Tablets (Printlets) With Braille and Moon Patterns for Visually Impaired Patients
,”
Pharmaceutics
,
12
(
2
), p.
172
.
92.
Genina
,
N.
,
Boetker
,
J. P.
,
Colombo
,
S.
,
Harmankaya
,
N.
,
Rantanen
,
J.
, and
Bohr
,
A.
,
2017
, “
Anti-tuberculosis Drug Combination for Controlled Oral Delivery Using 3D Printed Compartmental Dosage Forms: From Drug Product Design to In vivo Testing
,”
J. Controlled Release
,
268
, pp.
40
48
.
93.
Maroni
,
A.
,
Melocchi
,
A.
,
Parietti
,
F.
,
Foppoli
,
A.
,
Zema
,
L.
, and
Gazzaniga
,
A.
,
2017
, “
3D Printed Multi-compartment Capsular Devices for Two-Pulse Oral Drug Delivery
,”
J. Controlled Release
,
268
, pp.
10
18
.
94.
Karavasili
,
C.
,
Gkaragkounis
,
A.
,
Moschakis
,
T.
,
Ritzoulis
,
C.
, and
Fatouros
,
D. G.
,
2020
, “
Pediatric-Friendly Chocolate-Based Dosage Forms for the Oral Administration of Both Hydrophilic and Lipophilic Drugs Fabricated With Extrusion-Based 3D Printing
,”
Eur. J. Pharm. Sci.
,
147
, p.
105291
.
95.
Tagami
,
T.
,
Ito
,
E.
,
Kida
,
R.
,
Hirose
,
K.
,
Noda
,
T.
, and
Ozeki
,
T.
,
2021
, “
3D Printing of Gummy Drug Formulations Composed of Gelatin and an HPMC-Based Hydrogel for Pediatric use
,”
Int. J. Pharm.
,
594
, p.
120118
.
96.
Rycerz
,
K.
,
Stepien
,
K. A.
,
Czapiewska
,
M.
,
Arafat
,
B. T.
,
Habashy
,
R.
,
Isreb
,
A.
,
Peak
,
M.
, and
Alhnan
,
M. A.
,
2019
, “
Embedded 3D Printing of Novel Bespoke Soft Dosage Form Concept for Pediatrics
,”
Pharmaceutics
,
11
(
12
), p.
630
.
97.
Eleftheriadis
,
G. K.
, and
Fatouros
,
D. G.
,
2021
, “
Haptic Evaluation of 3D-Printed Braille-Encoded Intraoral Films
,”
Eur. J. Pharm. Sci.
,
157
, p.
105605
.
98.
Nukala
,
P. K.
,
Palekar
,
S.
,
Patki
,
M.
, and
Patel
,
K.
,
2019
, “
Abuse Deterrent Immediate Release Egg-Shaped Tablet (Egglets)Using 3D Printing Technology: Quality by Design to Optimize Drug Release And Extraction
,”
AAPS PharmSciTech
,
20
(
2
), p.
80
.
99.
Ong
,
J. J.
,
Awad
,
A.
,
Martorana
,
A.
,
Gaisford
,
S.
,
Stoyanov
,
E.
,
Basit
,
A. W.
, and
Goyanes
,
A.
,
2020
, “
3D Printed Opioid Medicines With Alcohol-Resistant and Abuse-Deterrent Properties
,”
Int. J. Pharm.
,
579
, p.
119169
.
100.
What Is ZipDose® Technology?
,” https://www.spritam.com/#/patient/zipdose-technology/what-is-zipdose-technology, Accessed September 30, 2021.
101.
Yan
,
R.
,
Luo
,
D.
,
Huang
,
H.
,
Li
,
R.
,
Yu
,
N.
,
Liu
,
C.
,
Hu
,
M.
, and
Rong
,
Q.
,
2018
, “
Electron Beam Melting in the Fabrication of Three-Dimensional Mesh Titanium Mandibular Prosthesis Scaffold
,”
Sci. Rep.
,
8
(
1
), p.
750
.
102.
Wu
,
G.
,
Zhou
,
B.
,
Bi
,
Y.
, and
Zhao
,
Y.
,
2008
, “
Selective Laser Sintering Technology for Customized Fabrication of Facial Prostheses
,”
J. Prosthet. Dent.
,
100
(
1
), pp.
56
60
.
103.
Liu
,
Z.
,
Zhang
,
P.
,
Yan
,
M.
,
Xie
,
Y.
, and
Huang
,
G.
,
2019
, “
Additive Manufacturing of Specific Ankle-Foot Orthoses for Persons After Stroke: A Preliminary Study Based on Gait Analysis Data
,”
Math. Biosci. Eng.
,
16
(
6
), pp.
8134
8143
.
104.
Oh
,
S. A.
,
Lee
,
C. M.
,
Lee
,
M. W.
,
Lee
,
Y. S.
,
Lee
,
G. H.
,
Kim
,
S. H.
,
Kim
,
S. K.
,
Park
,
J. W.
, and
Yea
,
J. W.
,
2017
, “
Fabrication of a Patient-Customized Helmet With a Three-Dimensional Printer for Radiation Therapy of Scalp
,”
Prog. Med. Phys.
,
28
(
3
), p.
100
.
105.
Karasahin
,
D.
,
n.d.
, “
Osteoid Medical Cast, Attachable Bone Stimulator
,” https://competition.adesignaward.com/design.php?ID=34151, Accessed September 30, 2021.
106.
Cho
,
S.-J.
,
Byun
,
D.
,
Nam
,
T.-S.
,
Choi
,
S.-Y.
,
Lee
,
B.-G.
,
Kim
,
M.-K.
, and
Kim
,
S.
,
2017
, “
A 3D-Printed Sensor for Monitoring Biosignals in Small Animals
,”
J. Healthc. Eng.
,
2017
, p.
9053764
.
107.
Rezaei Nejad
,
H.
,
Oliveira
,
B. C. M.
,
Sadeqi
,
A.
,
Dehkharghani
,
A.
,
Kondova
,
I.
,
Langermans
,
J. A. M.
,
Guasto
,
J. S.
,
Tzipori
,
S.
,
Widmer
,
G.
, and
Sonkusale
,
S. R.
,
2019
, “
Ingestible Osmotic Pill for In Vivo Sampling of Gut Microbiomes
,”
Adv. Intell. Syst.
,
1
(
5
), p.
1900053
.
108.
Maria Materon
,
E.
,
Wong
,
A.
,
Mariano Gomes
,
L.
,
Ibáñez-Redín
,
G.
,
Joshi
,
N.
,
Oliveira
,
O. N.
, and
Faria
,
R. C.
,
2021
, “
Combining 3D Printing and Screen-Printing in Miniaturized, Disposable Sensors With Carbon Paste Electrodes
,”
J. Mater. Chem. C
,
9
(
17
), pp.
5633
5642
.
109.
Park
,
J.
,
Kim
,
J.-K.
,
Park
,
S. A.
, and
Lee
,
D.-W.
,
2019
, “
Biodegradable Polymer Material Based Smart Stent: Wireless Pressure Sensor and 3D Printed Stent
,”
Microelectron. Eng.
,
206
, pp.
1
5
.
110.
Ragazou
,
K.
,
Lougkovois
,
R.
,
Katseli
,
V.
, and
Kokkinos
,
C.
,
2021
, “
Fully Integrated 3D-Printed Electronic Device for the On-Field Determination of Antipsychotic Drug Quetiapine
,”
Sensors
,
21
(
14
), p.
4753
.
111.
Salmoria
,
G. V.
,
Cardenuto
,
M. R.
,
Roesler
,
C. R. M.
,
Zepon
,
K. M.
, and
Kanis
,
L. A.
,
2016
, “
PCL/Ibuprofen Implants Fabricated by Selective Laser Sintering for Orbital Repair
,”
Procedia CIRP
,
49
, pp.
188
192
.
112.
Dunn
,
D. S.
,
Raghavan
,
S.
, and
Volz
,
R. G.
,
1993
, “
Gentamicin Sulfate Attachment and Release From Anodized Ti-6Al-4V Orthopedic Materials
,”
J. Biomed. Mater. Res.
,
27
(
7
), pp.
895
900
.
113.
Yan
,
D.
,
Zeng
,
B.
,
Han
,
Y.
,
Dai
,
H.
,
Liu
,
J.
,
Sun
,
Y.
, and
Li
,
F.
,
2020
, “
Preparation and Laser Powder bed Fusion of Composite Microspheres Consisting of Poly(Lactic Acid) and Nano-Hydroxyapatite
,”
Addit. Manuf.
,
34
, p.
101305
.
114.
Salmoria
,
G. V.
,
Vieira
,
F. E.
,
Ghizoni
,
G. B.
,
Gindri
,
I. M.
, and
Kanis
,
L. A.
,
2017
, “
Additive Manufacturing of PE/Fluorouracil Waffles for Implantable Drug Delivery in Bone Cancer Treatment
,”
Eng. J.
,
3
(
6
), pp.
62
70
.
115.
Salmoria
,
G. V.
,
Vieira
,
F. E.
,
Ghizoni
,
G. B.
,
Marques
,
M. S.
, and
Kanis
,
L. A.
,
2017
, “
3D Printing of PCL/Fluorouracil Tablets by Selective Laser Sintering: Properties of Implantable Drug Delivery for Cartilage Cancer Treatment
,”
Rheumatol. Orthop. Med.
,
4
(
6
), pp.
1
7
.
116.
van Hengel
,
I. A.
,
Riool
,
M.
,
Fratila-Apachitei
,
L. E.
,
Witte-Bouma
,
J.
,
Farrell
,
E.
,
Zadpoor
,
A. A.
,
Zaat
,
S. A.
, and
Apachitei
,
I.
,
2017
, “
Selective Laser Melting Porous Metallic Implants With Immobilized Silver Nanoparticles Kill and Prevent Biofilm Formation by Methicillin-Resistant Staphylococcus Aureus
,”
Biomaterials
,
140
, pp.
1
15
.
117.
Guan
,
B.
,
Wang
,
H.
,
Xu
,
R.
,
Zheng
,
G.
,
Yang
,
J.
,
Liu
,
Z.
,
Cao
,
M.
, et al
,
2016
, “
Establishing Antibacterial Multilayer Films on the Surface of Direct Metal Laser Sintered Titanium Primed With Phase-Transited Lysozyme
,”
Sci. Rep.
,
6
(
1
), p.
36408
.
118.
Bezuidenhout
,
M. B.
,
Booysen
,
E.
,
van Staden
,
A. D.
,
Uheida
,
E. H.
,
Hugo
,
P. A.
,
Oosthuizen
,
G. A.
,
Dimitrov
,
D. M.
, and
Dicks
,
L. M. T.
,
2018
, “
Selective Laser Melting of Integrated Ti6Al4V ELI Permeable Walls for Controlled Drug Delivery of Vancomycin
,”
ACS Biomater. Sci. Eng.
,
4
(
12
), pp.
4412
4424
.
119.
Hassanin
,
H.
,
Finet
,
L.
,
Cox
,
S. C.
,
Jamshidi
,
P.
,
Grover
,
L. M.
,
Shepherd
,
D. E. T.
,
Addison
,
O.
, and
Attallah
,
M. M.
,
2018
, “
Tailoring Selective Laser Melting Process for Titanium Drug-Delivering Implants With Releasing Micro-channels
,”
Addit. Manuf.
,
20
, pp.
144
155
.
120.
Xu
,
X.
,
Goyanes
,
A.
,
Trenfield
,
S. J.
,
Diaz-Gomez
,
L.
,
Alvarez-Lorenzo
,
C.
,
Gaisford
,
S.
, and
Basit
,
A. W.
,
2021
, “
Stereolithography (SLA) 3D Printing of a Bladder Device for Intravesical Drug Delivery
,”
Mater. Sci. Eng., C
,
120
, p.
111773
.
121.
Vivero-Lopez
,
M.
,
Xu
,
X.
,
Muras
,
A.
,
Otero
,
A.
,
Concheiro
,
A.
,
Gaisford
,
S.
,
Basit
,
A. W.
,
Alvarez-Lorenzo
,
C.
, and
Goyanes
,
A.
,
2021
, “
Anti-biofilm Multi Drug-Loaded 3D Printed Hearing Aids
,”
Mater. Sci. Eng., C
,
119
, p.
111606
.
122.
Kong
,
Y. L.
,
Zou
,
X.
,
McCandler
,
C. A.
,
Kirtane
,
A. R.
,
Ning
,
S.
,
Zhou
,
J.
,
Abid
,
A.
, et al
,
2019
, “
3D-Printed Gastric Resident Electronics
,”
Adv. Mater. Technol.
,
4
(
3
), p.
1800490
.
123.
Kim
,
S.-Y.
,
Han
,
G.
,
Hwang
,
D.-B.
,
Won
,
D.-H.
,
Shin
,
Y.-S.
,
Kim
,
C.
,
Kang
,
J. M.
, et al
,
2021
, “
Design and Usability Evaluations of a 3D-Printed Implantable Drug Delivery Device for Acute Liver Failure in Preclinical Settings
,”
Adv. Healthcare Mater.
,
10
(
14
), p.
2100497
.
124.
Xu
,
X.
,
Awwad
,
S.
,
Diaz-Gomez
,
L.
,
Alvarez-Lorenzo
,
C.
,
Brocchini
,
S.
,
Gaisford
,
S.
,
Goyanes
,
A.
, and
Basit
,
A. W.
,
2021
, “
3D Printed Punctal Plugs for Controlled Ocular Drug Delivery
,”
Pharmaceutics
,
13
(
9
), p.
1421
.
125.
Melocchi
,
A.
,
Inverardi
,
N.
,
Uboldi
,
M.
,
Baldi
,
F.
,
Maroni
,
A.
,
Pandini
,
S.
,
Briatico-Vangosa
,
F.
,
Zema
,
L.
, and
Gazzaniga
,
A.
,
2019
, “
Retentive Device for Intravesical Drug Delivery Based on Water-Induced Shape Memory Response of Poly(Vinyl Alcohol): Design Concept and 4D Printing Feasibility
,”
Int. J. Pharm.
,
559
, pp.
299
311
.
126.
Forouzandeh
,
F.
,
Ahamed
,
N. N.
,
Zhu
,
X.
,
Bazard
,
P.
,
Goyal
,
K.
,
Walton
,
J. P.
,
Frisina
,
R. D.
, and
Borkholder
,
D. A.
,
2021
, “
A Wirelessly Controlled Scalable 3D-Printed Microsystem for Drug Delivery
,”
Pharmaceuticals
,
14
(
6
), p.
538
.
127.
Weisman
,
J. A.
,
Ballard
,
D. H.
,
Jammalamadaka
,
U.
,
Tappa
,
K.
,
Sumerel
,
J.
,
D’Agostino
,
H. B.
,
Mills
,
D. K.
, and
Woodard
,
P. K.
,
2019
, “
3D Printed Antibiotic and Chemotherapeutic Eluting Catheters for Potential Use in Interventional Radiology: In vitro Proof of Concept Study
,”
Acad. Radiol.
,
26
(
2
), pp.
270
274
.
128.
Kim
,
T. H.
,
Lee
,
J.-H.
,
Ahn
,
C. B.
,
Hong
,
J. H.
,
Son
,
K. H.
, and
Lee
,
J. W.
,
2019
, “
Development of a 3D-Printed Drug-Eluting Stent for Treating Obstructive Salivary Gland Disease
,”
ACS Biomater. Sci. Eng.
,
5
(
7
), pp.
3572
3581
.
129.
Tappa
,
K.
,
Jammalamadaka
,
U.
,
Ballard
,
D. H.
,
Bruno
,
T.
,
Israel
,
M. R.
,
Vemula
,
H.
,
Meacham
,
J. M.
,
Mills
,
D. K.
,
Woodard
,
P. K.
, and
Weisman
,
J. A.
,
2017
, “
Medication Eluting Devices for the Field of OBGYN (MEDOBGYN): 3D Printed Biodegradable Hormone Eluting Constructs, a Proof of Concept Study
,”
PLoS One
,
12
(
8
), p.
e0182929
.
130.
Genina
,
N.
,
Holländer
,
J.
,
Jukarainen
,
H.
,
Mäkilä
,
E.
,
Salonen
,
J.
, and
Sandler
,
N.
,
2016
, “
Ethylene Vinyl Acetate (EVA) as a New Drug Carrier for 3D Printed Medical Drug Delivery Devices
,”
Eur. J. Pharm. Sci.
,
90
, pp.
53
63
.
131.
Yang
,
Y.
,
Zhou
,
Y.
,
Lin
,
X.
,
Yang
,
Q.
, and
Yang
,
G.
,
2020
, “
Printability of External and Internal Structures Based on Digital Light Processing 3D Printing Technique
,”
Pharmaceutics
,
12
(
3
), p.
207
.
132.
Farmer
,
Z.-L.
,
Utomo
,
E.
,
Domínguez-Robles
,
J.
,
Mancinelli
,
C.
,
Mathew
,
E.
,
Larrañeta
,
E.
, and
Lamprou
,
D. A.
,
2021
, “
3D Printed Estradiol-Eluting Urogynecological Mesh Implants: Influence of Material and Mesh Geometry on Their Mechanical Properties
,”
Int. J. Pharm.
,
593
, p.
120145
.
133.
Abbott
,
A.
,
2003
, “
Biology’s new Dimension
,”
Nature
,
424
(
6951
), pp.
870
872
.
134.
Liscovitch
,
M.
, and
Lavie
,
Y.
,
2002
, “
Cancer Multidrug Resistance: A Review of Recent Drug Discovery Research
,”
IDrugs: The Investigational Drugs Journal
,
5
(
4
), pp.
349
355
.
135.
Venkatesh
,
S.
, and
Lipper
,
R. A.
,
2000
, “
Role of the Development Scientist in Compound Lead Selection and Optimization
,”
J. Pharm. Sci.
,
89
(
2
), pp.
145
154
.
136.
Low
,
L. A.
, and
Tagle
,
D. A.
,
2017
, “
Tissue Chips—Innovative Tools for Drug Development and Disease Modeling
,”
Lab Chip
,
17
(
18
), pp.
3026
3036
.
137.
Inch
,
W.
,
Credie
,
J.
, and
Sutherland
,
R.
,
1970
, “
Growth of Nodular Carcinomas in Rodents Compared With Multi-cell Spheroids in Tissue Culture
,”
Subject Strain Bibliography
,
34
, pp.
271
282
. mouseion.jax.org/ssbb1970/265/
138.
Ivascu
,
A.
, and
Kubbies
,
M.
,
2006
, “
Rapid Generation of Single-Tumor Spheroids for High-Throughput Cell Function and Toxicity Analysis
,”
J. Biomol. Screen
,
11
(
8
), pp.
922
932
.
139.
Souza
,
G. R.
,
Molina
,
J. R.
,
Raphael
,
R. M.
,
Ozawa
,
M. G.
,
Stark
,
D. J.
,
Levin
,
C. S.
,
Bronk
,
L. F.
, et al
,
2010
, “
Three-Dimensional Tissue Culture Based on Magnetic Cell Levitation
,”
Nat. Nanotechnol.
,
5
(
4
), pp.
291
296
.
140.
Langhans
,
S. A.
,
2018
, “
Three-Dimensional In vitro Cell Culture Models in Drug Discovery and Drug Repositioning
,”
Front. Pharmacol.
,
9
, p.
6
.
141.
Lerche-Langrand
,
C.
, and
Toutain
,
H. J.
,
2000
, “
Precision-Cut Liver Slices : Characteristics and Use for In vitro Pharmaco-toxicology
,”
Toxicology
,
153
(
1–3
), pp.
221
253
.
142.
Neupert
,
G.
,
Glöckner
,
R.
, and
Müller
,
D.
,
1998
, “
Immunohistochemical Localization of Cytochrome P450 1A1 in Precision-Cut Rat Liver Slices After In vitro Exposure to β-Naphthoflavone
,”
Exp. Toxicol. Pathol.
,
50
(
4–6
), pp.
514
518
.
143.
Müller
,
D.
,
Glöckner
,
R.
,
Rost
,
M.
, and
Steinmetzer
,
P.
,
1998
, “
Monooxygenation, Cytochrome P450-mRNA Expression and Other Functions in Precision-Cut Rat Liver Slices
,”
Exp. Toxicol. Pathol.
,
50
(
4–6
), pp.
507
513
.
144.
Viravaidya
,
K.
,
Sin
,
A.
, and
Shuler
,
M. L.
,
2004
, “
Development of a Microscale Cell Culture Analog to Probe Naphthalene Toxicity
,”
Biotechnol. Prog.
,
20
(
1
), pp.
316
323
.
145.
Hwan Sung
,
J.
, and
Shuler
,
M. L.
,
2009
, “
A Micro Cell Culture Analog (µCCA) With 3-D Hydrogel Culture of Multiple Cell Lines to Assess Metabolism-Dependent Cytotoxicity of Anti-cancer Drugs
,”
Lab Chip
,
9
(
10
), pp.
1385
1394
.
146.
Powers
,
M. J.
,
Janigian
,
D. M.
,
Wack
,
K. E.
,
Baker
,
C. S.
,
Stolz
,
D. B.
, and
Griffith
,
L. G.
,
2002
, “
Functional Behavior of Primary Rat Liver Cells in a Three-Dimensional Perfused Microarray Bioreactor
,”
Tissue Eng.
,
8
(
3
), pp.
499
513
.
147.
Domansky
,
K.
,
Inman
,
W.
,
Serdy
,
J.
,
Dash
,
A.
,
Lim
,
M. H.
, and
Griffith
,
L. G.
,
2010
, “
Perfused Multiwell Plate for 3D Liver Tissue Engineering
,”
Lab Chip
,
10
(
1
), pp.
51
58
.
148.
Meropol
,
N. J.
,
1998
, “
Oral Fluoropyrimidines in the Treatment of Colorectal Cancer
,”
Eur. J. Cancer
,
34
(
10
), pp.
1509
1513
.
149.
Ma
,
L.
,
Barker
,
J.
,
Zhou
,
C.
,
Li
,
W.
,
Zhang
,
J.
,
Lin
,
B.
,
Foltz
,
G.
,
Küblbeck
,
J.
, and
Honkakoski
,
P.
,
2012
, “
Towards Personalized Medicine With a Three-Dimensional Micro-scale Perfusion-Based Two-Chamber Tissue Model System
,”
Biomaterials
,
33
(
17
), pp.
4353
4361
.
150.
Griffith
,
L. G.
, and
Swartz
,
M. A.
,
2006
, “
Capturing Complex 3D Tissue Physiology In vitro
,”
Nat. Rev. Mol. Cell Biol.
,
7
(
3
), pp.
211
224
.
151.
Zhu
,
W.
,
Ock
,
J.
,
Ma
,
X.
,
Li
,
W.
, and
Chen
,
S.
,
2015
, “Chapter 2 – 3D Printing and Nanomanufacturing,”
3D Bioprinting and Nanotechnology in Tissue Engineering and Regenerative Medicine
, 1st ed.,
L. G.
Zhang
,
J. P.
Fisher
, and
K. W.
Leong
, eds.,
Academic Press
,
Cambridge, MA
, pp.
25
55
.
152.
Pati
,
F.
,
Gantelius
,
J.
, and
Svahn
,
H. A.
,
2016
, “
3D Bioprinting of Tissue/Organ Models
,”
Angew. Chem., Int. Ed.
,
55
(
15
), pp.
4650
4665
.
153.
Cho
,
D.-W.
,
Kim
,
B. S.
,
Jang
,
J.
,
Gao
,
G.
,
Han
,
W.
, and
Singh
,
N. K.
,
2019
,
3D Bioprinting: Modeling In vitro Tissues and Organs Using Tissue-Specific Bioinks
, 1st ed.,
Springer Cham
,
Switzerland AG
.
154.
Ock
,
J.
, and
Li
,
W.
,
2020
, “
A High-Throughput Three-Dimensional Cell Culture Platform for Drug Screening
,”
Bio-Des. Manuf.
,
3
(
1
), pp.
40
47
.
155.
Ock
,
J.
, and
Li
,
W.
,
2014
, “
Fabrication of a Three-Dimensional Tissue Model Microarray Using Laser Foaming of a Gas-Impregnated Biodegradable Polymer
,”
Biofabrication
,
6
(
2
), p.
024110
.
156.
Jones
,
D.
,
2004
,
Pharmaceutical Applications of Polymers for Drug Delivery
, 1st ed., Vol.
15
,
Smithers Rapra Technology
,
Shrewsbury, UK
.
157.
Byrn
,
S. R.
,
Zografi
,
G.
, and
Chen
,
X.
,
2017
,
Solid State Properties of Pharmaceutical Materials
, 1st ed.,
John Wiley & Sons, Inc.
,
Hoboken NJ
.
158.
Seoane-Viaño
,
I.
,
Januskaite
,
P.
,
Alvarez-Lorenzo
,
C.
,
Basit
,
A. W.
, and
Goyanes
,
A.
,
2021
, “
Semi-solid Extrusion 3D Printing in Drug Delivery and Biomedicine: Personalised Solutions for Healthcare Challenges
,”
J. Controlled Release
,
332
, pp.
367
389
.
159.
Goole
,
J.
, and
Amighi
,
K.
,
2016
, “
3D Printing in Pharmaceutics: A New Tool for Designing Customized Drug Delivery Systems
,”
Int. J. Pharm.
,
499
(
1–2
), pp.
376
394
.
160.
Azad
,
M. A.
,
Olawuni
,
D.
,
Kimbell
,
G.
,
Badruddoza
,
A. Z. M.
,
Hossain
,
M. S.
, and
Sultana
,
T.
,
2020
, “
Polymers for Extrusion-Based 3D Printing of Pharmaceuticals: A Holistic Materials–Process Perspective
,”
Pharmaceutics
,
12
(
2
), p.
124
.
161.
Konta
,
A. A.
,
García-Piña
,
M.
, and
Serrano
,
D. R.
,
2017
, “
Personalised 3D Printed Medicines: Which Techniques and Polymers Are More Successful?
,”
Bioengineering
,
4
(
4
), p.
79
.
162.
Pereira
,
G. G.
,
Figueiredo
,
S.
,
Fernandes
,
A. I.
, and
Pinto
,
J. F.
,
2020
, “
Polymer Selection for Hot-Melt Extrusion Coupled to Fused Deposition Modelling in Pharmaceutics
,”
Pharmaceutics
,
12
(
9
), p.
795
.
163.
Elbadawi
,
M.
,
Gustaffson
,
T.
,
Gaisford
,
S.
, and
Basit
,
A. W.
,
2020
, “
3D Printing Tablets: Predicting Printability and Drug Dissolution From Rheological Data
,”
Int. J. Pharm.
,
590
, p.
119868
.
164.
Long
,
J.
,
Gholizadeh
,
H.
,
Lu
,
J.
,
Bunt
,
C.
, and
Seyfoddin
,
A.
,
2017
, “
Application of Fused Deposition Modelling (FDM) Method of 3D Printing in Drug Delivery
,”
Curr. Pharm. Des.
,
23
(
3
), pp.
433
439
.
165.
Awad
,
A.
,
Fina
,
F.
,
Goyanes
,
A.
,
Gaisford
,
S.
, and
Basit
,
A. W.
,
2020
, “
3D Printing: Principles and Pharmaceutical Applications of Selective Laser Sintering
,”
Int. J. Pharm.
,
586
, p.
119594
.
166.
de Oliveira
,
F. M.
,
Bunhak
,
ÉJ
,
dos Santos
,
L. F.
,
Barros
,
P. D.
, and
Cavalcanti
,
O. A.
,
2019
, “
α-Gluco-oligosaccharide in the Research and Development of a Polymeric Material for Modified Drug Delivery
,”
Heliyon
,
5
(
12
), p.
e03053
.
167.
Zidan
,
A.
,
Alayoubi
,
A.
,
Coburn
,
J.
,
Asfari
,
S.
,
Ghammraoui
,
B.
,
Cruz
,
C. N.
, and
Ashraf
,
M.
,
2019
, “
Extrudability Analysis of Drug Loaded Pastes for 3D Printing of Modified Release Tablets
,”
Int. J. Pharm.
,
554
, pp.
292
301
.
168.
Zhang
,
J.
,
Feng
,
X.
,
Patil
,
H.
,
Tiwari
,
R. V.
, and
Repka
,
M. A.
,
2017
, “
Coupling 3D Printing With Hot-Melt Extrusion to Produce Controlled-Release Tablets
,”
Int. J. Pharm.
,
519
(
1–2
), pp.
186
197
.
169.
Goyanes
,
A.
,
Buanz
,
A. B. M.
,
Hatton
,
G. B.
,
Gaisford
,
S.
, and
Basit
,
A. W.
,
2015
, “
3D Printing of Modified-Release Aminosalicylate (4-ASA and 5-ASA) Tablets
,”
Eur. J. Pharm. Biopharm.
,
89
, pp.
157
162
.
170.
Aho
,
J.
,
Boetker
,
J. P.
,
Baldursdottir
,
S.
, and
Rantanen
,
J.
,
2015
, “
Rheology as a Tool for Evaluation of Melt Processability of Innovative Dosage Forms
,”
Int. J. Pharm.
,
494
(
2
), pp.
623
642
.
171.
Yang
,
M.
,
Wang
,
P.
,
Suwardie
,
H.
, and
Gogos
,
C.
,
2011
, “
Determination of Acetaminophen’s Solubility in Poly(Ethylene Oxide) by Rheological, Thermal and Microscopic Methods
,”
Int. J. Pharm.
,
403
(
1–2
), pp.
83
89
.
172.
Shah
,
S.
,
Maddineni
,
S.
,
Lu
,
J.
, and
Repka
,
M. A.
,
2013
, “
Melt Extrusion With Poorly Soluble Drugs
,”
Int. J. Pharm.
,
453
(
1
), pp.
233
252
.
173.
Viidik
,
L.
,
Vesala
,
J.
,
Laitinen
,
R.
,
Korhonen
,
O.
,
Ketolainen
,
J.
,
Aruväli
,
J.
,
Kirsimäe
,
K.
, et al
,
2021
, “
Preparation and Characterization of hot-Melt Extruded Polycaprolactone-Based Filaments Intended for 3D-Printing of Tablets
,”
Eur. J. Pharm. Sci.
,
158
, pp.
105619
.
174.
Vigh
,
T.
,
Drávavölgyi
,
G.
,
Sóti
,
P. L.
,
Pataki
,
H.
,
Igricz
,
T.
,
Wagner
,
I.
,
Vajna
,
B.
,
Madarász
,
J.
,
Marosi
,
G.
, and
Nagy
,
Z. K.
,
2014
, “
Predicting Final Product Properties of Melt Extruded Solid Dispersions From Process Parameters Using Raman Spectrometry
,”
J. Pharm. Biomed. Anal.
,
98
, pp.
166
177
.
175.
Ilyés
,
K.
,
Kovács
,
N. K.
,
Balogh
,
A.
,
Borbás
,
E.
,
Farkas
,
B.
,
Casian
,
T.
,
Marosi
,
G.
,
Tomuță
,
I.
, and
Nagy
,
Z. K.
,
2019
, “
The Applicability of Pharmaceutical Polymeric Blends for the Fused Deposition Modelling (FDM) 3D Technique: Material Considerations–Printability–Process Modulation, With Consecutive Effects on In vitro Release, Stability and Degradation
,”
Eur. J. Pharm. Sci.
,
129
, pp.
110
123
.
176.
Elbadawi
,
M.
,
Muñiz Castro
,
B.
,
Gavins
,
F. K. H.
,
Ong
,
J. J.
,
Gaisford
,
S.
,
Pérez
,
G.
,
Basit
,
A. W.
,
Cabalar
,
P.
, and
Goyanes
,
A.
,
2020
, “
M3DISEEN: A Novel Machine Learning Approach for Predicting the 3D Printability of Medicines
,”
Int. J. Pharm.
,
590
, p.
119837
.
177.
Muñiz Castro
,
B.
,
Elbadawi
,
M.
,
Ong
,
J. J.
,
Pollard
,
T.
,
Song
,
Z.
,
Gaisford
,
S.
,
Pérez
,
G.
,
Basit
,
A. W.
,
Cabalar
,
P.
, and
Goyanes
,
A.
,
2021
, “
Machine Learning Predicts 3D Printing Performance of Over 900 Drug Delivery Systems
,”
J. Controlled Release
,
337
, pp.
530
545
.
178.
Oskui
,
S. M.
,
Diamante
,
G.
,
Liao
,
C.
,
Shi
,
W.
,
Gan
,
J.
,
Schlenk
,
D.
, and
Grover
,
W. H.
,
2016
, “
Assessing and Reducing the Toxicity of 3D-Printed Parts
,”
Environ. Sci. Technol. Lett.
,
3
(
1
), pp.
1
6
.
179.
Đuranović
,
M.
,
Obeid
,
S.
,
Madžarević
,
M.
,
Cvijić
,
S.
, and
Ibrić
,
S.
,
2021
, “
Paracetamol Extended Release FDM 3D Printlets: Evaluation of Formulation Variables on Printability and Drug Release
,”
Int. J. Pharm.
,
592
, p.
120053
.
180.
Kempin
,
W.
,
Domsta
,
V.
,
Grathoff
,
G.
,
Brecht
,
I.
,
Semmling
,
B.
,
Tillmann
,
S.
,
Weitschies
,
W.
, and
Seidlitz
,
A.
,
2018
, “
Immediate Release 3D-Printed Tablets Produced Via Fused Deposition Modeling of a Thermo-Sensitive Drug
,”
Pharm. Res.
,
35
(
6
), p.
124
.
181.
Goyanes
,
A.
,
Wang
,
J.
,
Buanz
,
A.
,
Martínez-Pacheco
,
R.
,
Telford
,
R.
,
Gaisford
,
S.
, and
Basit
,
A. W.
,
2015
, “
3D Printing of Medicines: Engineering Novel Oral Devices With Unique Design and Drug Release Characteristics
,”
Mol. Pharm.
,
12
(
11
), pp.
4077
4084
.
182.
Gioumouxouzis
,
C. I.
,
Baklavaridis
,
A.
,
Katsamenis
,
O. L.
,
Markopoulou
,
C. K.
,
Bouropoulos
,
N.
,
Tzetzis
,
D.
, and
Fatouros
,
D. G.
,
2018
, “
A 3D Printed Bilayer Oral Solid Dosage Form Combining Metformin for Prolonged and Glimepiride for Immediate Drug Delivery
,”
Eur. J. Pharm. Sci.
,
120
, pp.
40
52
.
183.
Awad
,
A.
,
Trenfield
,
S. J.
,
Gaisford
,
S.
, and
Basit
,
A. W.
,
2018
, “
3D Printed Medicines: A New Branch of Digital Healthcare
,”
Int. J. Pharm.
,
548
(
1
), pp.
586
596
.
184.
Awad
,
A.
,
Gaisford
,
S.
, and
Basit
,
A. W.
,
2018
, “Fused Deposition Modelling: Advances in Engineering and Medicine,”
3D Printing of Pharmaceuticals
, 1st ed.,
A. W.
Basit
, and
S.
Gaisford
, eds.,
Springer Cham
,
Switzerland AG
, pp.
107
132
.
185.
Chai
,
X.
,
Chai
,
H.
,
Wang
,
X.
,
Yang
,
J.
,
Li
,
J.
,
Zhao
,
Y.
,
Cai
,
W.
,
Tao
,
T.
, and
Xiang
,
X.
,
2017
, “
Fused Deposition Modeling (FDM) 3D Printed Tablets for Intragastric Floating Delivery of Domperidone
,”
Sci. Rep.
,
7
(
1
), p.
2829
.
186.
Melocchi
,
A.
,
Parietti
,
F.
,
Loreti
,
G.
,
Maroni
,
A.
,
Gazzaniga
,
A.
, and
Zema
,
L.
,
2015
, “
3D Printing by Fused Deposition Modeling (FDM) of a Swellable/Erodible Capsular Device for Oral Pulsatile Release of Drugs
,”
J. Drug Delivery Sci. Technol.
,
30
, pp.
360
367
.
187.
Smith
,
D.
,
Kapoor
,
Y.
,
Hermans
,
A.
,
Nofsinger
,
R.
,
Kesisoglou
,
F.
,
Gustafson
,
T. P.
, and
Procopio
,
A.
,
2018
, “
3D Printed Capsules for Quantitative Regional Absorption Studies in the GI Tract
,”
Int. J. Pharm.
,
550
(
1–2
), pp.
418
428
.
188.
Awad
,
A.
,
Trenfield
,
S. J.
, and
Basit
,
A. W.
,
2021
, “Chapter 19–Solid Oral Dosage Forms,”
Remington
, 23rd ed.,
A.
Adejare
, ed.,
Academic Press
,
Cambridge, MA
, pp.
333
358
.
189.
Okwuosa
,
T. C.
,
Stefaniak
,
D.
,
Arafat
,
B.
,
Isreb
,
A.
,
Wan
,
K.-W.
, and
Alhnan
,
M. A.
,
2016
, “
A Lower Temperature FDM 3D Printing for the Manufacture of Patient-Specific Immediate Release Tablets
,”
Pharm. Res.
,
33
(
11
), pp.
2704
2712
.
190.
Kollamaram
,
G.
,
Croker
,
D. M.
,
Walker
,
G. M.
,
Goyanes
,
A.
,
Basit
,
A. W.
, and
Gaisford
,
S.
,
2018
, “
Low Temperature Fused Deposition Modeling (FDM) 3D Printing of Thermolabile Drugs
,”
Int. J. Pharm.
,
545
(
1–2
), pp.
144
152
.
191.
Ghanizadeh Tabriz
,
A.
,
Nandi
,
U.
,
Hurt
,
A. P.
,
Hui
,
H.-W.
,
Karki
,
S.
,
Gong
,
Y.
,
Kumar
,
S.
, and
Douroumis
,
D.
,
2021
, “
3D Printed Bilayer Tablet With Dual Controlled Drug Release for Tuberculosis Treatment
,”
Int. J. Pharm.
,
593
, p.
120147
.
192.
Firth
,
J.
,
Basit
,
A. W.
, and
Gaisford
,
S.
,
2018
, “The Role of Semi-Solid Extrusion Printing in Clinical Practice,”
3D Printing of Pharmaceuticals
, 1st ed.,
A. W.
Basit
, and
S.
Gaisford
, eds.,
Springer Cham
,
Switzerland AG
, pp.
133
151
.
193.
Khaled
,
S. A.
,
Burley
,
J. C.
,
Alexander
,
M. R.
,
Yang
,
J.
, and
Roberts
,
C. J.
,
2015
, “
3D Printing of Tablets Containing Multiple Drugs With Defined Release Profiles
,”
Int. J. Pharm.
,
494
(
2
), pp.
643
650
.
194.
Vithani
,
K.
,
Goyanes
,
A.
,
Jannin
,
V.
,
Basit
,
A. W.
,
Gaisford
,
S.
, and
Boyd
,
B. J.
,
2019
, “
A Proof of Concept for 3D Printing of Solid Lipid-Based Formulations of Poorly Water-Soluble Drugs to Control Formulation Dispersion Kinetics
,”
Pharm. Res.
,
36
(
7
), p.
102
.
195.
Aita
,
I. E.
,
Breitkreutz
,
J.
, and
Quodbach
,
J.
,
2020
, “
Investigation of Semi-solid Formulations for 3D Printing of Drugs After Prolonged Storage to Mimic Real-Life Applications
,”
Eur. J. Pharm. Sci.
,
146
, p.
105266
.
196.
Elbl
,
J.
,
Gajdziok
,
J.
, and
Kolarczyk
,
J.
,
2020
, “
3D Printing of Multilayered Orodispersible Films With In-Process Drying
,”
Int. J. Pharm.
,
575
, p.
118883
.
197.
Cui
,
M.
,
Li
,
Y.
,
Wang
,
S.
,
Chai
,
Y.
,
Lou
,
J.
,
Chen
,
F.
,
Li
,
Q.
,
Pan
,
W.
, and
Ding
,
P.
,
2019
, “
Exploration and Preparation of a Dose-Flexible Regulation System for Levetiracetam Tablets via Novel Semi-solid Extrusion Three-Dimensional Printing
,”
J. Pharm. Sci.
,
108
(
2
), pp.
977
986
.
198.
Yu
,
I.
, and
Chen
,
R. K.
,
2020
, “
A Feasibility Study of an Extrusion-Based Fabrication Process for Personalized Drugs
,”
J. Pers. Med.
,
10
(
1
), p.
16
.
199.
Seoane-Viaño
,
I.
,
Ong
,
J. J.
,
Luzardo-Álvarez
,
A.
,
González-Barcia
,
M.
,
Basit
,
A. W.
,
Otero-Espinar
,
F. J.
, and
Goyanes
,
A.
,
2021
, “
3D Printed Tacrolimus Suppositories for the Treatment of Ulcerative Colitis
,”
Asian J. Pharm. Sci.
,
16
(
1
), pp.
110
119
.
200.
Goyanes
,
A.
,
Fernández-Ferreiro
,
A.
,
Majeed
,
A.
,
Gomez-Lado
,
N.
,
Awad
,
A.
,
Luaces-Rodríguez
,
A.
,
Gaisford
,
S.
,
Aguiar
,
P.
, and
Basit
,
A. W.
,
2018
, “
PET/CT Imaging of 3D Printed Devices in the Gastrointestinal Tract of Rodents
,”
Int. J. Pharm.
,
536
(
1
), pp.
158
164
.
201.
Seoane-Viaño
,
I.
,
Gómez-Lado
,
N.
,
Lázare-Iglesias
,
H.
,
García-Otero
,
X.
,
Antúnez-López
,
J. R.
,
Ruibal
,
Á
,
Varela-Correa
,
J. J.
, et al
,
2020
, “
3D Printed Tacrolimus Rectal Formulations Ameliorate Colitis in an Experimental Animal Model of Inflammatory Bowel Disease
,”
Biomedicines
,
8
(
12
), p.
563
.
202.
Yu
,
I.
,
Grindrod
,
S.
, and
Chen
,
R.
,
2020
, “
Controllability Over Wall Thickness of Tubular Structures and Encapsulation During Co-axial Extrusion of a Thermal-Crosslinking Hydrogel
,”
ASME J. Manuf. Sci. Eng.
,
142
(
8
), p.
081006
.
203.
Yu
,
I.
, and
Chen
,
R.
,
2021
, “
An Experimental and Numerical Study on Coaxial Extrusion of a Non-Newtonian Hydrogel Material
,”
ASME J. Manuf. Sci. Eng.
,
143
(
8
), p.
081008
.
204.
Goyanes
,
A.
,
Allahham
,
N.
,
Trenfield
,
S. J.
,
Stoyanov
,
E.
,
Gaisford
,
S.
, and
Basit
,
A. W.
,
2019
, “
Direct Powder Extrusion 3D Printing: Fabrication of Drug Products Using a Novel Single-Step Process
,”
Int. J. Pharm.
,
567
, p.
118471
.
205.
Boniatti
,
J.
,
Januskaite
,
P.
,
da Fonseca
,
L. B.
,
Viçosa
,
A. L.
,
Amendoeira
,
F. C.
,
Tuleu
,
C.
,
Basit
,
A. W.
,
Goyanes
,
A.
,
,
M.-I.
,
2021
, “
Direct Powder Extrusion 3D Printing of Praziquantel to Overcome Neglected Disease Formulation Challenges in Paediatric Populations
,”
Pharmaceutics
,
13
(
8
), p.
1114
.
206.
Downing
,
J.
,
2018
, “
Cycle Pharmaceuticals to Use 3D Printing to Develop “Orphan Drugs
”,” Cambridge Independent. https://www.cambridgeindependent.co.uk/business/cycle-pharmaceuticals-to-use-3d-printing-to-develop-orphan-drugs-9053341/, Accessed September 30, 2021.
207.
3D Printing Industry
,
2021
, “
Triastek Receives FDA IND Clearance for 3D Printed Drug to Treat Rheumatoid Arthritis
,” https://3dprintingindustry.com/news/triastek-receives-fda-ind-clearance-for-3d-printed-drug-to-treat-rheumatoid-arthritis-184159/, Accessed September 30, 2021.
208.
Bagheri
,
A.
, and
Jin
,
J.
,
2019
, “
Photopolymerization in 3D Printing
,”
ACS Appl. Polym. Mater.
,
1
(
8
), pp.
593
611
.
209.
Xu
,
X.
,
Awad
,
A.
,
Robles-Martinez
,
P.
,
Gaisford
,
S.
,
Goyanes
,
A.
, and
Basit
,
A. W.
,
2021
, “
Vat Photopolymerization 3D Printing for Advanced Drug Delivery and Medical Device Applications
,”
J. Controlled Release
,
329
, pp.
743
757
.
210.
Borrello
,
J.
,
Nasser
,
P.
,
Iatridis
,
J. C.
, and
Costa
,
K. D.
,
2018
, “
3D Printing a Mechanically-Tunable Acrylate Resin on a Commercial DLP-SLA Printer
,”
Addit. Manuf.
,
23
, pp.
374
380
.
211.
Krishnamoorthy
,
S.
,
Zhang
,
Z.
, and
Xu
,
C.
,
2020
, “
Guided Cell Migration on a Graded Micropillar Substrate
,”
Bio-Des. Manuf.
,
3
(
1
), pp.
60
70
.
212.
Rodríguez-Pombo
,
L.
,
Xu
,
X.
,
Seijo-Rabina
,
A.
,
Ong
,
J. J.
,
Alvarez-Lorenzo
,
C.
,
Rial
,
C.
,
Nieto
,
D.
,
Gaisford
,
S.
,
Basit
,
A. W.
, and
Goyanes
,
A.
,
2022
, “
Volumetric 3D Printing for Rapid Production of Medicines
,”
Addit. Manuf.
,
52
, p.
102673
.
213.
Yin
,
J.
,
Zhao
,
D.
, and
Liu
,
J.
,
2019
, “
Trends on Physical Understanding of Bioink Printability
,”
Bio-Des. Manuf.
,
2
(
1
), pp.
50
54
.
214.
Wang
,
J.
,
Goyanes
,
A.
,
Gaisford
,
S.
, and
Basit
,
A. W.
,
2016
, “
Stereolithographic (SLA) 3D Printing of Oral Modified-Release Dosage Forms
,”
Int. J. Pharm.
,
503
(
1–2
), pp.
207
212
.
215.
Martinez
,
P. R.
,
Goyanes
,
A.
,
Basit
,
A. W.
, and
Gaisford
,
S.
,
2017
, “
Fabrication of Drug-Loaded Hydrogels With Stereolithographic 3D Printing
,”
Int. J. Pharm.
,
532
(
1
), pp.
313
317
.
216.
Kadry
,
H.
,
Wadnap
,
S.
,
Xu
,
C.
, and
Ahsan
,
F.
,
2019
, “
Digital Light Processing (DLP) 3D-Printing Technology and Photoreactive Polymers in Fabrication of Modified-Release Tablets
,”
Eur. J. Pharm. Sci.
,
135
, pp.
60
67
.
217.
Prendergast
,
M. E.
, and
Burdick
,
J. A.
,
2020
, “
Recent Advances in Enabling Technologies in 3D Printing for Precision Medicine
,”
Adv. Mater.
,
32
(
13
), p.
1902516
.
218.
Sun
,
Y.
, and
Soh
,
S.
,
2015
, “
Printing Tablets With Fully Customizable Release Profiles for Personalized Medicine
,”
Adv. Mater.
,
27
(
47
), pp.
7847
7853
.
219.
Zhang
,
J.
,
Hu
,
Q.
,
Wang
,
S.
,
Tao
,
J.
, and
Gou
,
M.
,
2019
, “
Digital Light Processing Based Three-Dimensional Printing for Medical Applications
,”
Int. J. Bioprint.
,
6
(
1
), p.
242
.
220.
Tao
,
J.
,
Zhang
,
J.
,
Du
,
T.
,
Xu
,
X.
,
Deng
,
X.
,
Chen
,
S.
,
Liu
,
J.
, et al
,
2019
, “
Rapid 3D Printing of Functional Nanoparticle-Enhanced Conduits for Effective Nerve Repair
,”
Acta Biomater.
,
90
, pp.
49
59
.
221.
Krkobabić
,
M.
,
Medarević
,
D.
,
Cvijić
,
S.
,
Grujić
,
B.
, and
Ibrić
,
S.
,
2019
, “
Hydrophilic Excipients in Digital Light Processing (DLP) Printing of Sustained Release Tablets: Impact on Internal Structure and Drug Dissolution Rate
,”
Int. J. Pharm.
,
572
, p.
118790
.
222.
Stanojević
,
G.
,
Medarević
,
D.
,
Adamov
,
I.
,
Pešić
,
N.
,
Kovačević
,
J.
, and
Ibrić
,
S.
,
2021
, “
Tailoring Atomoxetine Release Rate From DLP 3D-Printed Tablets Using Artificial Neural Networks: Influence of Tablet Thickness and Drug Loading
,”
Molecules
,
26
(
1
), p.
111
.
223.
Caudill
,
C. L.
,
Perry
,
J. L.
,
Tian
,
S.
,
Luft
,
J. C.
, and
DeSimone
,
J. M.
,
2018
, “
Spatially Controlled Coating of Continuous Liquid Interface Production Microneedles for Transdermal Protein Delivery
,”
J. Controlled Release
,
284
, pp.
122
132
.
224.
Yang
,
Q.
,
Zhong
,
W.
,
Xu
,
L.
,
Li
,
H.
,
Yan
,
Q.
,
She
,
Y.
, and
Yang
,
G.
,
2021
, “
Recent Progress of 3D-Printed Microneedles for Transdermal Drug Delivery
,”
Int. J. Pharm.
,
593
, p.
120106
.
225.
Ng
,
L.-T.
,
Swami
,
S.
, and
Gordon-Thomson
,
C.
,
2006
, “
Hydrogels Synthesised Through Photoinitiator-Free Photopolymerisation Technique for Delivering Drugs Including a Tumour-Tracing Porphyrin
,”
Radiat. Phys. Chem.
,
75
(
5
), pp.
604
612
.
226.
Huang
,
H.-J.
,
Tsai
,
Y.-L.
,
Lin
,
S.-H.
, and
Hsu
,
S.-H.
,
2019
, “
Smart Polymers for Cell Therapy and Precision Medicine
,”
J. Biomed. Sci.
,
26
(
1
), p.
73
.
227.
Raffa
,
R. B.
,
Dasrath
,
C. S.
, and
Brown
,
D. R.
,
2003
, “
Disruption of a Drug-Induced Choice Behavior by UV Light
,”
Behav. Pharmacol.
,
14
(
7
), pp.
569
571
.
228.
Goodridge
,
R.
, and
Ziegelmeier
,
S.
,
2017
, “7 - Powder Bed Fusion of Polymers,”
Laser Additive Manufacturing: Materials, Design, Technologies, and Applications
, 1st ed.,
M.
Brandt
, ed.,
Woodhead Publishing
,
Sawston, Cambridge
, pp.
181
204
.
229.
Awad
,
A.
,
Fina
,
F.
,
Goyanes
,
A.
,
Gaisford
,
S.
, and
Basit
,
A. W.
,
2021
, “
Advances in Powder Bed Fusion 3D Printing in Drug Delivery and Healthcare
,”
Adv. Drug Delivery Rev.
,
174
, pp.
406
424
.
230.
Gokuldoss
,
P. K.
,
Kolla
,
S.
, and
Eckert
,
J.
,
2017
, “
Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder Jetting—Selection Guidelines
,”
Materials
,
10
(
6
), p.
672
.
231.
Sillani
,
F.
,
Kleijnen
,
R. G.
,
Vetterli
,
M.
,
Schmid
,
M.
, and
Wegener
,
K.
,
2019
, “
Selective Laser Sintering and Multi jet Fusion: Process-Induced Modification of the Raw Materials and Analyses of Parts Performance
,”
Addit. Manuf.
,
27
, pp.
32
41
.
232.
Kruth
,
J.-P.
,
Mercelis
,
P.
,
Van Vaerenbergh
,
J.
,
Froyen
,
L.
,
Rombouts
,
M.
,
Bartolo
,
P. J.
,
Mitchell
,
G.
,
Mateus
,
A.
,
Batista
,
F.
,
Vasco
,
J.
,
Correia
,
M.
,
Andre
,
N.
,
Lima
,
P.
,
Novo
,
P.
,
Custodio
,
P.
, and
Martinho
,
P.
,
2003
, “
Advances in Selective Laser Sintering
,”
Proceedings of the 1st International Conference on Advanced Research in Virtual and Rapid Prototyping
,
Leiria, Portugal
,
Oct. 1
.
233.
Fina
,
F.
,
Gaisford
,
S.
, and
Basit
,
A. W.
,
2018
, “Powder Bed Fusion: The Working Process, Current Applications and Opportunities,”
3D Printing of Pharmaceuticals
, 1st ed.,
A. W.
Basit
, and
S.
Gaisford
, eds.,
Springer Cham
,
Switzerland AG
, pp.
81
105
.
234.
Beaman
,
J. J.
, and
Deckard
,
C. R.
,
1990
, “
Selective Laser Sintering With Assisted Powder Handling
,” Patent No. US4938816A.
235.
Allahham
,
N.
,
Fina
,
F.
,
Marcuta
,
C.
,
Kraschew
,
L.
,
Mohr
,
W.
,
Gaisford
,
S.
,
Basit
,
A. W.
, and
Goyanes
,
A.
,
2020
, “
Selective Laser Sintering 3D Printing of Orally Disintegrating Printlets Containing Ondansetron
,”
Pharmaceutics
,
12
(
2
), p.
110
.
236.
Fina
,
F.
,
Madla
,
C. M.
,
Goyanes
,
A.
,
Zhang
,
J.
,
Gaisford
,
S.
, and
Basit
,
A. W.
,
2018
, “
Fabricating 3D Printed Orally Disintegrating Printlets Using Selective Laser Sintering
,”
Int. J. Pharm.
,
541
(
1–2
), pp.
101
107
.
237.
Redwood
,
B.
,
2020
, “
How to Design Parts for Metal 3D Printing
,” https://www.hubs.com/knowledge-base/how-design-parts-metal-3d-printing/, Accessed September 30, 2021.
238.
Varotsis
,
A. B.
,
2020
, “
Introduction to Metal 3D Printing
,” https://www.hubs.com/knowledge-base/introduction-metal-3d-printing/, Accessed September 30, 2021.
239.
Chueh
,
Y.-H.
,
Wei
,
C.
,
Zhang
,
X.
, and
Li
,
L.
,
2020
, “
Integrated Laser-Based Powder Bed Fusion and Fused Filament Fabrication for Three-Dimensional Printing of Hybrid Metal/Polymer Objects
,”
Addit. Manuf.
,
31
, p.
100928
.
240.
Terrazas
,
C. A.
,
Gaytan
,
S. M.
,
Rodriguez
,
E.
,
Espalin
,
D.
,
Murr
,
L. E.
,
Medina
,
F.
, and
Wicker
,
R. B.
,
2014
, “
Multi-material Metallic Structure Fabrication Using Electron Beam Melting
,”
Int. J. Adv. Manuf. Technol.
,
71
(
1–4
), pp.
33
45
.
241.
Rossi
,
S.
,
Puglisi
,
A.
, and
Benaglia
,
M.
,
2018
, “
Additive Manufacturing Technologies: 3d Printing in Organic Synthesis
,”
ChemCatChem
,
10
(
7
), pp.
1512
1525
.
242.
Jamshidinia
,
M.
,
Atabaki
,
M. M.
,
Zahiri
,
M.
,
Kelly
,
S.
,
Sadek
,
A.
, and
Kovacevic
,
R.
,
2015
, “
Microstructural Modification of Ti–6Al–4V by Using an In-situ Printed Heat Sink in Electron Beam Melting® (EBM)
,”
J. Mater. Process. Technol.
,
226
, pp.
264
271
.
243.
Sames
,
W. J.
,
List
,
F. A.
,
Pannala
,
S.
,
Dehoff
,
R. R.
, and
Babu
,
S. S.
,
2016
, “
The Metallurgy and Processing Science of Metal Additive Manufacturing
,”
Int. Mater. Rev.
,
61
(
5
), pp.
315
360
.
244.
Murr
,
L. E.
,
Gaytan
,
S. M.
,
Ramirez
,
D. A.
,
Martinez
,
E.
,
Hernandez
,
J.
,
Amato
,
K. N.
,
Shindo
,
P. W.
,
Medina
,
F. R.
, and
Wicker
,
R. B.
,
2012
, “
Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies
,”
J. Mater. Sci. Technol.
,
28
(
1
), pp.
1
14
.
245.
Rafi
,
H. K.
,
Karthik
,
N. V.
,
Gong
,
H.
,
Starr
,
T. L.
, and
Stucker
,
B. E.
,
2013
, “
Microstructures and Mechanical Properties of Ti6Al4v Parts Fabricated by Selective Laser Melting and Electron Beam Melting
,”
J. Mater. Eng. Perform.
,
22
(
12
), pp.
3872
3883
.
246.
Brambilla
,
C. R. M.
,
Okafor-Muo
,
O. L.
,
Hassanin
,
H.
, and
ElShaer
,
A.
,
2021
, “
3dp Printing of Oral Solid Formulations: A Systematic Review
,”
Pharmaceutics
,
13
(
3
), p.
358
.
247.
Delaney
,
J. T.
,
Smith
,
P. J.
, and
Schubert
,
U. S.
,
2009
, “
Inkjet Printing of Proteins
,”
Soft Matter
,
5
(
24
), pp.
4866
4877
.
248.
Angelopoulos
,
I.
,
Allenby
,
M. C.
,
Lim
,
M.
, and
Zamorano
,
M.
,
2020
, “
Engineering Inkjet Bioprinting Processes Toward Translational Therapies
,”
Biotechnol. Bioeng.
,
117
(
1
), pp.
272
284
.
249.
Saunders
,
R. E.
,
Gough
,
J. E.
, and
Derby
,
B.
,
2008
, “
Delivery of Human Fibroblast Cells by Piezoelectric Drop-on-Demand Inkjet Printing
,”
Biomaterials
,
29
(
2
), pp.
193
203
.
250.
Sen
,
K.
,
Mehta
,
T.
,
Sansare
,
S.
,
Sharifi
,
L.
,
Ma
,
A. W. K.
, and
Chaudhuri
,
B.
,
2021
, “
Pharmaceutical Applications of Powder-Based Binder Jet 3D Printing Process—A Review
,”
Adv. Drug Delivery Rev.
,
177
, p.
113943
.
251.
Cui
,
X.
,
Boland
,
T.
,
D.D’Lima
,
D.
, and
K. Lotz
,
M.
,
2012
, “
Thermal Inkjet Printing in Tissue Engineering and Regenerative Medicine
,”
Recent Pat. Drug Deliv. Formul.
,
6
(
2
), pp.
149
155
.
252.
Murphy
,
S. V.
, and
Atala
,
A.
,
2014
, “
3D Bioprinting of Tissues and Organs
,”
Nat. Biotechnol.
,
32
(
8
), pp.
773
785
.
253.
Solis
,
L. H.
,
Ayala
,
Y.
,
Portillo
,
S.
,
Varela-Ramirez
,
A.
,
Aguilera
,
R.
, and
Boland
,
T.
,
2019
, “
Thermal Inkjet Bioprinting Triggers the Activation of the VEGF Pathway in Human Microvascular Endothelial Cells In vitro
,”
Biofabrication
,
11
(
4
), p.
045005
.
254.
Rahmati
,
S.
,
Shirazi
,
S. F.
, and
Baghayeri
,
H.
,
2009
, “
Piezo-electric Head Application in a New 3D Printing Design
,”
Rapid Prototyp. J.
,
15
(
3
), pp.
187
191
.
255.
Wilson
,
W. C.
, Jr.
, and
Boland
,
T.
, 2003, “
Cell and Organ Printing 1: Protein and Cell Printers
,”
Anat. Rec. A Discov. Mol. Cell. Evol. Biol.
,
272A
(2), pp.
491
496
.
256.
Cui
,
X.
,
Dean
,
D.
,
Ruggeri
,
Z. M.
, and
Boland
,
T.
,
2010
, “
Cell Damage Evaluation of Thermal Inkjet Printed Chinese Hamster Ovary Cells
,”
Biotechnol. Bioeng.
,
106
(6), pp.
963
969
.
257.
Derby
,
B.
,
2010
, “
Inkjet Printing of Functional and Structural Materials: Fluid Property Requirements, Feature Stability, and Resolution
,”
Annu. Rev. Mater. Res.
,
40
(1), pp.
395
414
.
258.
Bishop
,
E. S.
,
Mostafa
,
S.
,
Pakvasa
,
M.
,
Luu
,
H. H.
,
Lee
,
M. J.
,
Wolf
,
J. M.
,
Ameer
,
G. A.
,
He
,
T.-C.
, and
Reid
,
R. R.
,
2017
, “
3-D Bioprinting Technologies in Tissue Engineering and Regenerative Medicine: Current and Future Trends
,”
Genes Dis.
,
4
(4), pp.
185
195
.
259.
Saunders
,
R. E.
, and
Derby
,
B.
,
2014
, “
Inkjet Printing Biomaterials for Tissue Engineering: Bioprinting
,”
Int. Mater. Rev.
,
59
(8), pp.
430
448
.
260.
Lee
,
W.
,
Lee
,
V.
,
Polio
,
S.
,
Keegan
,
P.
,
Lee
,
J.-H.
,
Fischer
,
K.
,
Park
,
J.-K.
, and
Yoo
,
S.-S.
,
2010
, “
On-demand Three-Dimensional Freeform Fabrication of Multi-layered Hydrogel Scaffold With Fluidic Channels
,”
Biotechnol. Bioeng.
,
105
, pp.
1178
1186
.
261.
Long Ng
,
W.
,
Min Lee
,
J.
,
Yee Yeong
,
W.
, and
Naing
,
M. W.
,
2017
, “
Microvalve-Based Bioprinting—Process, Bio-inks and Applications
,”
Biomaterials Science
,
5
(4), pp.
632
647
.
262.
Rosen
,
D. W.
,
Margolin
,
L.
, and
Vohra
,
S.
,
2008
, “
Printing High Viscosity Fluids Using Ultrasonic Droplet
,”
Proceedings of the 2008 International Solid Freeform Fabrication Symposium
,
Austin, TX
,
August
.
263.
Fang
,
Y.
,
Frampton
,
J. P.
,
Raghavan
,
S.
,
Sabahi-Kaviani
,
R.
,
Luker
,
G.
,
Deng
,
C. X.
, and
Takayama
,
S.
,
2012
, “
Rapid Generation of Multiplexed Cell Cocultures Using Acoustic Droplet Ejection Followed by Aqueous Two-Phase Exclusion Patterning
,”
Tissue Eng. Part C
,
18
(9), pp.
647
657
.
264.
Demirci
,
U.
, and
Montesano
,
G.
,
2007
, “
Single Cell Epitaxy by Acoustic Picolitre Droplets
,”
Lab Chip
,
7
(9), pp.
1139
1145
.
265.
Foresti
,
D.
,
Kroll
,
K. T.
,
Amissah
,
R.
,
Sillani
,
F.
,
Homan
,
K. A.
,
Poulikakos
,
D.
, and
Lewis
,
J. A.
,
2018
, “
Acoustophoretic Printing
,”
Sci. Adv.
,
4
(8), p.
eaat1659
.
266.
Montenegro-Nicolini
,
M.
,
Reyes
,
P. E.
,
Jara
,
M. O.
,
Vuddanda
,
P. R.
,
Neira-Carrillo
,
A.
,
Butto
,
N.
,
Velaga
,
S
, and
Morales
,
J. O.
,
2018
, “
The Effect of Inkjet Printing Over Polymeric Films as Potential Buccal Biologics Delivery Systems
,”
AAPS PharmSciTech
,
19
(8), pp.
3376
3387
.
267.
Arshad
,
M. S.
,
Shahzad
,
A.
,
Abbas
,
N.
,
AlAsiri
,
A.
,
Hussain
,
A.
,
Kucuk
,
I.
,
Chang
,
M.-W.
,
Bukhari
,
N. I.
, and
Ahmad
,
Z.
,
2020
, “
Preparation and Characterization of Indomethacin Loaded Films by Piezoelectric Inkjet Printing: A Personalized Medication Approach
,”
Pharm. Dev. Technol.
,
25
(2), pp.
197
205
.
268.
Ahn
,
S. H.
,
Lee
,
J.
,
Park
,
S. A.
, and
Kim
,
W. D.
,
2016
, “
Three-Dimensional Bio-printing Equipment Technologies for Tissue Engineering and Regenerative Medicine
,”
Tissue Eng. Regen. Med.
,
13
(6), pp.
663
676
.
269.
Ibrahim
,
D.
,
Broilo
,
T. L.
,
Heitz
,
C.
,
de Oliveira
,
M. G.
,
de Oliveira
,
H. W.
,
Nobre
,
S. M. W.
,
dos Santos Filho
,
J. H. G.
, and
Silva
,
D. N.
,
2009
, “
Dimensional Error of Selective Laser Sintering, Three-Dimensional Printing and PolyJetTM Models in the Reproduction of Mandibular Anatomy
,”
J. Craniomaxillofac. Surg.
,
37
(3), pp.
167
173
.
270.
Sochol
,
R. D.
,
Sweet
,
E.
,
Glick
,
C. C.
,
Venkatesh
,
S.
,
Avetisyan
,
A.
,
Ekman
,
K. F.
,
Raulinaitis
,
A.
, et al
,
2016
, “
3D Printed Microfluidic Circuitry via Multijet-Based Additive Manufacturing
,”
Lab Chip
,
16
(4), pp.
668
678
.
271.
Sachs
,
E.
,
Cima
,
M.
,
Cornie
,
J.
,
Brancazio
,
D.
,
Bredt
,
J.
,
Curodeau
,
A.
,
Fan
,
T.
, et al
,
1993
, “
Three-Dimensional Printing: The Physics and Implications of Additive Manufacturing
,”
CIRP Ann.
,
42
(1), pp.
257
260
.
272.
Wudy
,
K.
, and
Drummer
,
D.
,
2019
, “
Infiltration Behavior of Thermosets for Use in a Combined Selective Laser Sintering Process of Polymers
,”
JOM
,
71
, pp.
920
927
.
273.
Wang
,
Y.
,
Xu
,
Z.
,
Wu
,
D.
, and
Bai
,
J.
,
2020
, “
Current Status and Prospects of Polymer Powder 3D Printing Technologies
,”
Materials
,
13
(10), p.
2406
.
274.
Kumar
,
A.
,
Mandal
,
S.
,
Barui
,
S.
,
Vasireddi
,
R.
,
Gbureck
,
U.
,
Gelinsky
,
M.
, and
Basu
,
B.
,
2016
, “
Low Temperature Additive Manufacturing of Three Dimensional Scaffolds for Bone-Tissue Engineering Applications: Processing Related Challenges and Property Assessment
,”
Mater. Sci. Eng. R Rep.
,
103
, pp.
1
39
.
275.
Vaezi
,
M.
,
Seitz
,
H.
, and
Yang
,
S.
,
2013
, “
A Review on 3D Micro-additive Manufacturing Technologies
,”
Int. J. Adv. Manuf. Technol.
,
67
(5–8), pp.
1721
1754
.
276.
Utela
,
B.
,
Storti
,
D.
,
Anderson
,
R.
, and
Ganter
,
M.
,
2008
, “
A Review of Process Development Steps for New Material Systems in Three Dimensional Printing (3DP)
,”
J. Manuf. Processes
,
10
(2), pp.
96
104
.
277.
Ayres
,
T. J.
,
Sama
,
S. R.
,
Joshi
,
S. B.
, and
Manogharan
,
G. P.
,
2019
, “
Influence of Resin Infiltrants on Mechanical and Thermal Performance in Plaster Binder Jetting Additive Manufacturing
,”
Addit. Manuf.
,
30
, p.
100885
.
278.
Miyanaji
,
H.
,
Rahman
,
K. M.
,
Da
,
M.
, and
Williams
,
C. B.
,
2020
, “
Effect of Fine Powder Particles on Quality of Binder Jetting Parts
,”
Addit. Manuf.
,
36
, p.
101587
.
279.
Garzón
,
E. O.
,
Alves
,
J. L.
, and
Neto
,
R. J.
,
2017
, “Post-process Influence of Infiltration on Binder Jetting Technology,”
Materials Design and Applications
, 1st ed., Vol.
65
,
L. F.
Da Silva
, ed.,
Springer Cham
,
Switzerland AG
, pp.
233
255
.
280.
Kumbhar
,
N. N.
, and
Mulay
,
A. V.
,
2018
, “
Post Processing Methods Used to Improve Surface Finish of Products Which Are Manufactured by Additive Manufacturing Technologies: A Review
,”
J. Inst. Eng. (India): C
,
99
(
4)
, pp.
481
487
.
281.
Ziaee
,
M.
, and
Crane
,
N. B.
,
2019
, “
Binder Jetting: A Review of Process, Materials, and Methods
,”
Addit. Manuf.
,
28
, pp.
781
801
.
282.
Rahman
,
Z.
,
Charoo
,
N. A.
,
Kuttolamadom
,
M.
,
Asadi
,
A.
, and
Khan
,
M. A.
,
2020
, “Chapter 46 – Printing of Personalized Medication Using Binder Jetting 3D Printer,”
Precision Medicine for Investigators, Practitioners and Providers
, 1st ed.,
J.
Faintuch
, and
S.
Faintuch
, eds.,
Academic Press
,
Cambridge, MA
, pp.
473
481
.
283.
Yu
,
D.-G.
,
Branford-White
,
C.
,
Ma
,
Z.-H.
,
Zhu
,
L.-M.
,
Li
,
X.-Y.
, and
Yang
,
X.-L.
,
2009
, “
Novel Drug Delivery Devices for Providing Linear Release Profiles Fabricated by 3DP
,”
Int. J. Pharm.
,
370
(
1–2
), pp.
160
166
.
284.
Wang
,
C.-C.
,
Tejwani (Motwani)
,
M. R.
,
Roach
,
W. J.
,
Kay
,
J. L.
,
Yoo
,
J.
,
Surprenant
,
H. L.
,
Monkhouse
,
D. C.
, and
Pryor
,
T. J.
,
2006
, “
Development of Near Zero-Order Release Dosage Forms Using Three-Dimensional Printing (3-DPTM) Technology
,”
Drug Dev. Ind. Pharm.
,
32
(
3
), pp.
367
376
.
285.
Inzana
,
J. A.
,
Olvera
,
D.
,
Fuller
,
S. M.
,
Kelly
,
J. P.
,
Graeve
,
O. A.
,
Schwarz
,
E. M.
,
Kates
,
S. L.
, and
Awad
,
H. A.
,
2014
, “
3D Printing of Composite Calcium Phosphate and Collagen Scaffolds for Bone Regeneration
,”
Biomaterials
,
35
(
13
), pp.
4026
4034
.
286.
Fielding
,
G.
, and
Bose
,
S.
,
2013
, “
SiO2 and ZnO Dopants in Three-Dimensionally Printed Tricalcium Phosphate Bone Tissue Engineering Scaffolds Enhance Osteogenesis and Angiogenesis In vivo
,”
Acta Biomater.
,
9
(
11
), pp.
9137
9148
.
287.
US Food and Drug Administration
,
2009
, “
Q8(R2) Pharmaceutical Development
,” https://www.fda.gov/media/71535/download, Accessed November 10, 2021.
288.
US Food and Drug Administration
,
2006
, “
ICH, Q9 Quality Risk Management
,” https://www.fda.gov/media/71543/download, Accessed November 10, 2021.
289.
US Food and Drug Administration
,
2009
, “
ICH, Q10 Pharmaceutical Quality System
,” https://www.fda.gov/media/71553/download.
290.
US Food and Drug Administration
,
n.d.
, “
Q11 Development and Manufacture of Drug Substances
,” https://www.fda.gov/files/drugs/published/Q11-Development-and-Manufacture-of-Drug-Substances.pdf, Accessed November 10, 2021.
291.
US Food and Drug Administration
,
2020
, “
PAT—A Framework for Innovative Pharmaceutical Development, Manufacturing, and Quality Assurance
,” http://www.fda.gov/regulatory-information/search-fda-guidance-documents/pat-framework-innovative-pharmaceutical-development-manufacturing-and-quality-assurance, Accessed November 10, 2021.
292.
US Food and Drug Administration
,
2020
, “
Technical Considerations for Additive Manufactured Medical Devices
,” http://www.fda.gov/regulatory-information/search-fda-guidance-documents/technical-considerations-additive-manufactured-medical-devices, Accessed November 10, 2021.
293.
Zidan
,
A.
,
Alayoubi
,
A.
,
Asfari
,
S.
,
Coburn
,
J.
,
Ghammraoui
,
B.
,
Aqueel
,
S.
,
Cruz
,
C. N.
, and
Ashraf
,
M.
,
2019
, “
Development of Mechanistic Models to Identify Critical Formulation and Process Variables of Pastes for 3D Printing of Modified Release Tablets
,”
Int. J. Pharm.
,
555
, pp.
109
123
.
294.
n.d.
, “
Approved Risk Evaluation and Mitigation Strategies (REMS)
,” https://www.accessdata.fda.gov/scripts/cder/rems/index.cfm, Accessed November 10, 2021.
295.
US Food and Drug Administration
,
2021
, “
Facts About Good Manufacturing Practices (CGMPs)
,” https://www.fda.gov/drugs/pharmaceutical-quality-resources/facts-about-current-good-manufacturing-practices-cgmps, Accessed November 10, 2021.
296.
US Food and Drug Administration
,
2020
, “
Health C for D and R. General Principles of Software Validation
,” http://www.fda.gov/regulatory-information/search-fda-guidance-documents/general-principles-software-validation, Accessed November 10, 2021.
297.
Rahman
,
Z.
,
Barakh Ali
,
S. F.
,
Ozkan
,
T.
,
Charoo
,
N. A.
,
Reddy
,
I. K.
, and
Khan
,
M. A.
,
2018
, “
Additive Manufacturing With 3D Printing: Progress From Bench to Bedside
,”
AAPS J.
,
20
(
6
), p.
101
.
298.
Denicolai
,
S.
, and
Previtali
,
P.
,
2020
, “
Precision Medicine: Implications for Value Chains and Business Models in Life Sciences
,”
Technol. Forecast. Soc. Change
,
151
, p.
119767
.
299.
Schartinger
,
D.
,
Miles
,
I.
,
Saritas
,
O.
,
Amanatidou
,
E.
,
Giesecke
,
S.
,
Heller-Schuh
,
B.
,
Pombo-Juarez
,
L.
, and
Schreier
,
G.
,
2015
, “
Personal Health Systems Technologies: Critical Issues in Service Innovation and Diffusion
,”
Technol. Innov. Manag. Rev.
,
5
(
2
), pp.
4
57
.
300.
Gould
,
C. C.
,
2018
, “
Solidarity and the Problem of Structural Injustice in Healthcare
,”
Bioethics
,
32
(
9
), pp.
541
552
.
301.
U.S. Food And Drug Administration
,
2004
, “
Guidance for industry PAT—A Framework for Innovative Pharmaceutical Development, Manufacturing, and Quality Assurance
,”
Rockville, MD
.
302.
Strachan
,
C. J.
,
Rades
,
T.
,
Gordon
,
K. C.
, and
Rantanen
,
J.
,
2007
, “
Raman Spectroscopy for Quantitative Analysis of Pharmaceutical Solids
,”
J. Pharm. Pharmacol.
,
59
(
2
), pp.
179
192
.
303.
Paudel
,
A.
,
Raijada
,
D.
, and
Rantanen
,
J.
,
2015
, “
Raman Spectroscopy in Pharmaceutical Product Design
,”
Adv. Drug Delivery Rev.
,
89
, pp.
3
20
.
304.
Edinger
,
M.
,
Iftimi
,
L.-D.
,
Markl
,
D.
,
Al-Sharabi
,
M.
,
Bar-Shalom
,
D.
,
Rantanen
,
J.
, and
Genina
,
N.
,
2019
, “
Quantification of Inkjet-Printed Pharmaceuticals on Porous Substrates Using Raman Spectroscopy and Near-Infrared Spectroscopy
,”
AAPS PharmSciTech
,
20
(
5
), p.
207
.
305.
Rahman
,
Z.
,
Mohammad
,
A.
,
Akhtar
,
S.
,
Siddiqui
,
A.
,
Korang-Yeboah
,
M.
, and
Khan
,
M. A.
,
2015
, “
Chemometric Model Development and Comparison of Raman and 13c Solid-State Nuclear Magnetic Resonance–Chemometric Methods for Quantification of Crystalline/Amorphous Warfarin Sodium Fraction in the Formulations
,”
J. Pharm. Sci.
,
104
(
8
), pp.
2550
2558
.
306.
Siddiqui
,
A.
,
Rahman
,
Z.
,
Sayeed
,
V. A.
, and
Khan
,
M. A.
,
2013
, “
Chemometric Evaluation of Near Infrared, Fourier Transform Infrared, and Raman Spectroscopic Models for the Prediction of Nimodipine Polymorphs
,”
J. Pharm. Sci.
,
102
(
11
), pp.
4024
4035
.
307.
Melocchi
,
A.
,
Briatico-Vangosa
,
F.
,
Uboldi
,
M.
,
Parietti
,
F.
,
Turchi
,
M.
,
von Zeppelin
,
D.
,
Maroni
,
A.
,
Zema
,
L.
,
Gazzaniga
,
A.
, and
Zidan
,
A.
,
2021
, “
Quality Considerations on the Pharmaceutical Applications of Fused Deposition Modeling 3D Printing
,”
Int. J. Pharm.
,
592
, p.
119901
.
308.
Vakili
,
H.
,
Kolakovic
,
R.
,
Genina
,
N.
,
Marmion
,
M.
,
Salo
,
H.
,
Ihalainen
,
P.
,
Peltonen
,
J.
, and
Sandler
,
N.
,
2015
, “
Hyperspectral Imaging in Quality Control of Inkjet Printed Personalised Dosage Forms
,”
Int. J. Pharm.
,
483
(
1–2
), pp.
244
249
.
309.
Aho
,
J.
,
Bøtker
,
J. P.
,
Genina
,
N.
,
Edinger
,
M.
,
Arnfast
,
L.
, and
Rantanen
,
J.
,
2019
, “
Roadmap to 3D-Printed Oral Pharmaceutical Dosage Forms: Feedstock Filament Properties and Characterization for Fused Deposition Modeling
,”
J. Pharm. Sci.
,
108
(
1
), pp.
26
35
.
310.
Sandler
,
N.
,
Kassamakov
,
I.
,
Ehlers
,
H.
,
Genina
,
N.
,
Ylitalo
,
T.
, and
Haeggstrom
,
E.
,
2014
, “
Rapid Interferometric Imaging of Printed Drug Laden Multilayer Structures
,”
Sci. Rep.
,
4
(
1
), p.
4020
.
311.
FabRx
,
2020
, M3DIMAKERTM, https://www.fabrx.co.uk/technologies/, Accessed September 30, 2021.
312.
Merck
,
2022
, “
Shaping the Future of Healthcare
,” https://www.emdgroup.com/en/research/science-space/envisioning-tomorrow/precision-medicine/additive-manufacturing.html, Accessed November 22, 2022.
You do not currently have access to this content.