Abstract

To understand the past successes and future opportunities for applying Industry 4.0 technologies toward manufacturing sustainability assessment, this state-of-the-art review examines previous literature at the intersection of these domains. Specifically, we focus on the application of Industry 4.0 technologies in the context of the following stages in manufacturing sustainability assessment: (i) planning, infrastructure development, and problem definition, (ii) performance measurement, (iii) results interpretation and decision-making, as well as (iv) intervention, control, and validation strategies. On the basis of the literature review, we present the trends, benefits, research gaps, and required future work for holistically integrating the research domains mentioned above. To accompany this literature review, we performed a meta-analysis of 14,498 articles and compared them to 316 articles compiled from a focused literature search. Based on database-controlled keywords, networks representing keyword co-occurrences were constructed to reveal clusters of related terms and evaluate overall term centrality (i.e., importance). Results from this analysis showed that the two datasets exhibited a similar network structure and also helped reveal Industry 4.0-related opportunities for manufacturing sustainability assessment. They include areas such as automation, robotics, and advanced inspection technologies, which are yet to be exploited in manufacturing sustainability assessment. Further research is needed to investigate whether the incorporation of such areas can (i) facilitate more robust and accessible assessments of manufacturing sustainability and (ii) make manufacturing systems themselves more sustainable.

References

1.
Haapala
,
K. R.
,
Zhao
,
F.
,
Camelio
,
J.
,
Sutherland
,
J. W.
,
Skerlos
,
S. J.
,
Dornfeld
,
D. A.
,
Jawahir
,
I. S.
,
Clarens
,
A. F.
, and
Rickli
,
J. L.
,
2013
, “
A Review of Engineering Research in Sustainable Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
135
(
4
), p.
041013
.
2.
Ramani
,
K.
,
Ramanujan
,
D.
,
Bernstein
,
W. Z.
,
Zhao
,
F.
,
Sutherland
,
J.
,
Handwerker
,
C.
,
Choi
,
J.-K.
,
Kim
,
H.
, and
Thurston
,
D.
,
2010
, “
Integrated Sustainable Life Cycle Design: A Review
,”
ASME J. Mech. Des.
,
132
(
9
), p.
091004
.
3.
Linke
,
B. S.
,
Garcia
,
D. R.
,
Kamath
,
A.
, and
Garretson
,
I. C.
,
2019
, “
Data-Driven Sustainability in Manufacturing: Selected Examples
,”
Procedia Manuf.
,
33
, pp.
602
609
.
4.
Raoufi
,
K.
,
Manoharan
,
S.
, and
Haapala
,
K. R.
,
2019
, “
Synergizing Product Design Information and Unit Manufacturing Process Analysis to Support Sustainable Engineering Education
,”
ASME J. Manuf. Sci. Eng.
,
141
(
2
), p.
021018
.
5.
Glišić
,
M.
,
Sarfraz
,
S.
,
Veluri
,
B.
, and
Ramanujan
,
D.
,
2022
, “
A Systematic Framework for Quantifying Production System-Specific Challenges in Life Cycle Inventory Data Collection
,”
Procedia CIRP
,
105
, pp.
210
218
.
6.
Stock
,
T.
, and
Seliger
,
G.
,
2016
, “
Opportunities of Sustainable Manufacturing in Industry 4.0
,”
Procedia CIRP
,
40
, pp.
536
541
.
7.
ASTM International
,
2018
,
Standard Guide for Evaluation of Environmental Aspects of Sustainability of Manufacturing Processes. ASTM E2986-18 Standard
,
ASTM International
,
West Conshohocken, PA
.
8.
Rüßmann
,
M.
,
Lorenz
,
M.
,
Gerbert
,
P.
,
Waldner
,
M.
,
Engel
,
P.
,
Harnisch
,
M.
, and
Justus
,
J.
,
2015
, “
Industry 4.0: The Future of Productivity and Growth in Manufacturing Industries
,” https://www.bcg.com/publications/2015/engineered_products_project_business_industry_4_future_productivity_growth_manufacturing_industries, Accessed November 20, 2021.
9.
Bai
,
C.
,
Dallasega
,
P.
,
Orzes
,
G.
, and
Sarkis
,
J.
,
2020
, “
Industry 4.0 Technologies Assessment: A Sustainability Perspective
,”
Int. J. Prod. Econ.
,
229
, p.
107776
.
10.
Frank
,
A. G.
,
Dalenogare
,
L. S.
, and
Ayala
,
N. F.
,
2019
, “
Industry 4.0 Technologies: Implementation Patterns in Manufacturing Companies
,”
Int. J. Prod. Econ.
,
210
, pp.
15
26
.
11.
Chiarello
,
F.
,
Trivelli
,
L.
,
Bonaccorsi
,
A.
, and
Fantoni
,
G.
,
2018
, “
Extracting and Mapping Industry 4.0 Technologies Using Wikipedia
,”
Comput. Ind.
,
100
, pp.
244
257
.
12.
Hermann
,
M.
,
Pentek
,
T.
, and
Otto
,
B.
,
2016
, “
Design Principles for Industrie 4.0 Scenarios
,”
2016 49th Hawaii International Conference on System Sciences (HICSS)
,
Koloa, HI
,
Jan. 5–8
, pp.
3928
3937
.
13.
Inkermann
,
D.
,
Schneider
,
D.
,
Martin
,
N. L.
,
Lembeck
,
H.
,
Zhang
,
J.
, and
Thiede
,
S.
,
2019
, “
A Framework to Classify Industry 4.0 Technologies Across Production and Product Development
,”
Procedia CIRP
,
84
, pp.
973
978
, 29th CIRP Design Conference 2019, 08-10 May 2019, Póvoa de Varzim, Portgal.
14.
Chan
,
F. T.
,
Li
,
N.
,
Chung
,
S.
, and
Saadat
,
M.
,
2017
, “
Management of Sustainable Manufacturing Systems—A Review on Mathematical Problems
,”
Int. J. Prod. Res.
,
55
(
4
), pp.
1210
1225
.
15.
Garretson
,
I. C.
,
Mani
,
M.
,
Leong
,
S.
,
Lyons
,
K. W.
, and
Haapala
,
K. R.
,
2016
, “
Terminology to Support Manufacturing Process Characterization and Assessment for Sustainable Production
,”
J. Cleaner Prod.
,
139
, pp.
986
1000
.
16.
Moldavska
,
A.
, and
Welo
,
T.
,
2017
, “
The Concept of Sustainable Manufacturing and Its Definitions: A Content-Analysis Based Literature Review
,”
J. Cleaner Prod.
,
166
, pp.
744
755
.
17.
Organisation for Economic Cooperation and Development
,
2011
, “
The OECD Sustainable Manufacturing Toolkit
,” https://www.oecd.org/innovation/green/toolkit/48704993.pdf, Accessed August 8, 2021.
18.
International Organization of Standardization
,
2019
, “
Automation Systems and Integration—Evaluating Energy Efficiency and Other Factors of Manufacturing Systems That Influence the Environment—Part 1: Overview and General Principles, Standard, International Organization for Standardization
,” Geneva, CH.
19.
ASTM International
,
2021
, “
Subcommittee E60.13 on Sustainable Manufacturing
,” https://www.astm.org/COMMIT/SUBCOMMIT/E6013.htm, Accessed August 8, 2021.
20.
Singh
,
R. K.
,
Murty
,
H.
,
Gupta
,
S.
, and
Dikshit
,
A.
,
2009
, “
An Overview of Sustainability Assessment Methodologies
,”
Ecol. Indicators
,
9
(
2
), pp.
189
212
.
21.
Moldavska
,
A.
, and
Welo
,
T.
,
2015
, “
On the Applicability of Sustainability Assessment Tools in Manufacturing
,”
Procedia CIRP
,
29
, pp.
621
626
.
22.
Pope
,
J.
,
Annandale
,
D.
, and
Morrison-Saunders
,
A.
,
2004
, “
Conceptualising Sustainability Assessment
,”
Environ. Impact Assess. Rev.
,
24
(
6
), pp.
595
616
.
23.
Sala
,
S.
,
Ciuffo
,
B.
, and
Nijkamp
,
P.
,
2015
, “
A Systemic Framework for Sustainability Assessment
,”
Ecol. Econ.
,
119
, pp.
314
325
.
24.
Devuyst
,
D.
,
Hens
,
L.
,
De Lannoy
,
W.
, and
de Lannoy
,
W.
,
2001
,
How Green is the City?: Sustainability Assessment and the Management of Urban Environments
,
Columbia University Press
,
New York
.
25.
Verheem
,
R.
,
2002
, “
Recommendations for Sustainability Assessment in the Netherlands
,”
Commission for EIA
,
Netherlands
, Technical Report. https://www.commissiemer.nl/docs/mer/diversen/eia_views_2002.pdf.
26.
Lee
,
J. Y.
, and
Lee
,
Y. T.
,
2013
,
A Framework for Research Inventory of Manufacturing Sustainability Assessment
,
US Department of Commerce. National Institute of Standards and Technology
,
Gaithersburg, MD
.
27.
International Standards Organization
,
2015
, “
ISO 14000 Family Environmental Management
,” https://www.iso.org/iso-14001-environmental-management.html, Accessed August 8, 2021.
28.
Gbededo
,
M. A.
,
Liyanage
,
K.
, and
Garza-Reyes
,
J. A.
,
2018
, “
Towards a Life Cycle Sustainability Analysis: A Systematic Review of Approaches to Sustainable Manufacturing
,”
J. Cleaner Prod.
,
184
, pp.
1002
1015
.
29.
Malek
,
J.
, and
Desai
,
T. N.
,
2020
, “
A Systematic Literature Review to Map Literature Focus of Sustainable Manufacturing
,”
J. Cleaner Prod.
,
256
, p.
120345
.
30.
Akbar
,
M.
, and
Irohara
,
T.
,
2018
, “
Scheduling for Sustainable Manufacturing: A Review
,”
J. Cleaner Prod.
,
205
, pp.
866
883
.
31.
Hartini
,
S.
, and
Ciptomulyono
,
U.
,
2015
, “
The Relationship Between Lean and Sustainable Manufacturing on Performance: Literature Review
,”
Procedia Manuf.
,
4
, pp.
38
45
, Industrial Engineering and Service Science 2015, IESS 2015.
32.
Thirupathi
,
R.
,
Vinodh
,
S.
, and
Dhanasekaran
,
S.
,
2021
, “
State of Art Review on Strategies, Tools and Indicators of Sustainable Manufacturing
,”
Int. J. Services Operat. Manage.
,
40
(
1
), pp.
68
86
.
33.
Ayabaca
,
C.
, and
Vila
,
C.
,
2020
, “
An Approach to Sustainable Metrics Definition and Evaluation for Green Manufacturing in Material Removal Processes
,”
Materials
,
13
(
2
), p.
373
.
34.
Zarte
,
M.
,
Pechmann
,
A.
, and
Nunes
,
I. L.
,
2019
, “
Decision Support Systems for Sustainable Manufacturing Surrounding the Product and Production Life Cycle—A Literature Review
,”
J. Cleaner Prod.
,
219
, pp.
336
349
.
35.
Jamwal
,
A.
,
Agrawal
,
R.
,
Sharma
,
M.
, and
Kumar
,
V.
,
2021
, “
Review on Multi-Criteria Decision Analysis in Sustainable Manufacturing Decision Making
,”
Int. J. Sustain. Eng.
,
14
(
3
), pp.
202
225
.
36.
Gupta
,
K.
,
Laubscher
,
R.
,
Davim
,
J. P.
, and
Jain
,
N.
,
2016
, “
Recent Developments in Sustainable Manufacturing of Gears: A Review
,”
J. Cleaner Prod.
,
112
(
4
), pp.
3320
3330
.
37.
Sen
,
B.
,
Mia
,
M.
,
Krolczyk
,
G. M.
,
Mandal
,
U. K.
, and
Mondal
,
S. P.
,
2021
, “
Eco-Friendly Cutting Fluids in Minimum Quantity Lubrication Assisted Machining: A Review on the Perception of Sustainable Manufacturing
,”
Int. J. Prec. Eng. Manuf.-Green Technol.
,
8
(
1
), pp.
249
280
.
38.
Qureshi
,
M. I.
,
Khan
,
N.
,
Qayyum
,
S.
,
Malik
,
S.
,
Hishan
,
S. S.
, and
Ramayah
,
T.
,
2020
, “
Classifications of Sustainable Manufacturing Practices in ASEAN Region: A Systematic Review and Bibliometric Analysis of the Past Decade of Research
,”
Sustainability
,
12
(
21
), p.
8950
.
39.
Ngu
,
H. J.
,
Lee
,
M. D.
, and
Bin Osman
,
M. S.
,
2020
, “
Review on Current Challenges and Future Opportunities in Malaysia Sustainable Manufacturing: Remanufacturing Industries
,”
J. Cleaner Prod.
,
273
, p.
123071
.
40.
Shah
,
S.
,
Menon
,
S.
,
Ojo
,
O. O.
, and
Naghi Ganji
,
E.
,
2020
, “
Digitalisation in Sustainable Manufacturing—A Literature Review
,”
2020 IEEE International Conference on Technology Management
,
Marrakech, Morocco
,
Nov. 24–27
,
Operations and Decisions (ICTMOD)
, pp.
1
6
.
41.
Henao-Hernández
,
I.
,
Solano-Charris
,
E. L.
,
Muñoz-Villamizar
,
A.
,
Santos
,
J.
, and
Henríiquez-Machado
,
R.
,
2019
, “
Control and Monitoring for Sustainable Manufacturing in the Industry 4.0: A Literature Review
,”
IFAC-PapersOnLine
,
52
(
10
), pp.
195
200
13th IFAC Workshop on Intelligent Manufacturing Systems IMS 2019.
42.
Ball
,
P.
, and
Badakhshan
,
E.
,
2022
, “
Sustainable Manufacturing Digital Twins: A Review of Development and Application
,”
Sustainable Design and Manufacturing
,
Scholz
,
S. G.
,
Howlett
,
R. J.
, and
Setchi
,
R.
, eds.,
Springer
,
Singapore
, pp.
159
168
.
43.
Iubel de Oliveira Pereira
,
D.
,
Pinheiro de Lima
,
E.
,
Gonçalves Machado
,
C.
, and
Gouvêa da Costa
,
S. E.
,
2020
, “
A Review Content Analysis Between Industry 4.0 and Sustainable Manufacturing
,”
Proceedings on 25th International Joint Conference on Industrial Engineering and Operations Management – IJCIEOM
,
Novi sad, Serbia
,
July 15–17
,
Anisic
,
Z.
,
Lalic
,
B.
, and
Gracanin
,
D.
, eds.,
Springer International Publishing
, pp.
12
23
.
44.
Sartal
,
A.
,
Bellas
,
R.
,
Mejías
,
A. M.
, and
García-Collado
,
A.
,
2020
, “
The Sustainable Manufacturing Concept, Evolution and Opportunities Within Industry 4.0: A Literature Review
,”
Adv. Mech. Eng.
,
12
(
5
), p.
1687814020925232
.
45.
Enyoghasi
,
C.
, and
Badurdeen
,
F.
,
2021
, “
Industry 4.0 for Sustainable Manufacturing: Opportunities at the Product, Process, and System Levels
,”
Res. Conserv. Recycling
,
166
, p.
105362
.
46.
Newman
,
M.
,
2018
,
Networks
,
Oxford University Press
,
Oxford, UK
.
47.
Jacomy
,
M.
,
Venturini
,
T.
,
Heymann
,
S.
, and
Bastian
,
M.
,
2014
, “
Forceatlas2, a Continuous Graph Layout Algorithm for Handy Network Visualization Designed for the Gephi Software
,”
PLoS One
,
9
(
6
), p.
e98679
.
48.
Woods
,
D. D.
, and
Hollnagel
,
E.
,
2006
,
Joint Cognitive Systems: Patterns in Cognitive Systems Engineering
,
CRC Press
,
Boca Raton, FL
.
49.
Kamble
,
S. S.
,
Gunasekaran
,
A.
,
Ghadge
,
A.
, and
Raut
,
R.
,
2020
, “
A Performance Measurement System for Industry 4.0 Enabled Smart Manufacturing System in Smmes-A Review and Empirical Investigation
,”
Int. J. Prod. Econ.
,
229
, p.
107853
.
50.
Yan
,
J.
,
Meng
,
Y.
,
Lu
,
L.
, and
Li
,
L.
,
2017
, “
Industrial Big Data in an Industry 4.0 Environment: Challenges, Schemes, and Applications for Predictive Maintenance
,”
IEEE Access
,
5
, pp.
23484
23491
.
51.
Zhao
,
Y. F.
,
Perry
,
N.
, and
Andriankaja
,
H.
,
2013
, “A Manufacturing Informatics Framework for Manufacturing Sustainability Assessment,”
Re-engineering Manufacturing for Sustainability
,
A.
Nee
,
B.
Song
, and
S.K.
Ong
, eds., .
Springer
,
Singapore
, pp.
475
480
.
52.
Lechevalier
,
D.
,
Narayanan
,
A.
, and
Rachuri
,
S.
,
2014
, “
Towards a Domain-Specific Framework for Predictive Analytics in Manufacturing
,”
2014 IEEE International Conference on Big Data (Big Data)
,
Washington, DC
,
Oct. 27–30
,
IEEE
, pp.
987
995
.
53.
Valivullah
,
L.
,
Mani
,
M.
,
Lyons
,
K. W.
, and
Gupta
,
S.
,
2014
, “
Manufacturing Process Information Models for Sustainable Manufacturing
,”
International Manufacturing Science and Engineering Conference
,
Detroit, MI
,
June 9–13
, Vol.
45806
,
American Society of Mechanical Engineers
, p.
V001T05A005
.
54.
Zhang
,
H.
,
Zhu
,
B.
,
Li
,
Y.
,
Yaman
,
O.
, and
Roy
,
U.
,
2015
, “
Development and Utilization of a Process-Oriented Information Model for Sustainable Manufacturing
,”
J. Manuf. Syst.
,
37
(
2
), pp.
459
466
.
55.
Mandolini
,
M.
,
Marconi
,
M.
,
Rossi
,
M.
,
Favi
,
C.
, and
Germani
,
M.
,
2019
, “
A Standard Data Model for Life Cycle Analysis of Industrial Products: A Support for Eco-Design Initiatives
,”
Comput. Ind.
,
109
, pp.
31
44
.
56.
Vadoudi
,
K.
,
Bratec
,
F.
, and
Troussier
,
N.
,
2017
, “
A GIS-Oriented Semantic Data Model to Support PLM for DfS
,”
Int. J. Product Lifecycle Manage.
,
10
(
3
), pp.
210
230
.
57.
Rachuri
,
S.
,
Sriram
,
R. D.
,
Narayanan
,
A.
,
Sarkar
,
P.
,
Lee
,
J. H.
,
Lyons
,
K. W.
, and
Kemmerer
,
S. J.
,
2010
, “
Sustainable Manufacturing: Metrics, Standards, and Infrastructure-Workshop Summary
,”
2010 IEEE International Conference on Automation Science and Engineering
,
Toronto, ON
,
Canada, Aug. 21–24
,
IEEE
, pp.
144
149
.
58.
ASTM International
,
2020
,
Standard Guide for Characterizing Environmental Aspects of Manufacturing Processes. ASTM E3012-20 Standard
,
ASTM International
,
West Conshohocken, PA
.
59.
International Electrotechnical Commission
,
2021
, “
IEC 61360-4—Common Data Dictionary (CDD - V2.0014.0017)
,” https://cdd.iec.ch/cdd/iec61360/iec61360.nsf/TreeFrameset?OpenFrameSet, Accessed November 9, 2021.
60.
Karray
,
M.
,
Otte
,
N.
,
Rai
,
R.
,
Ameri
,
F.
,
Kulvatunyou
,
B.
,
Smith
,
B.
,
Kiritsis
,
D.
,
Will
,
C.
, and
Arista
,
R.
,
2021
, “
The Industrial Ontologies Foundry (IOF) Perspectives
,”
Industrial Ontology Foundry (IOF)-Achieving Data Interoperability Workshop
,
Tarbes, France
,
Mar. 17–24
.
61.
Brundage
,
M. P.
,
Bernstein
,
W. Z.
,
Hoffenson
,
S.
,
Chang
,
Q.
,
Nishi
,
H.
,
Kliks
,
T.
, and
Morris
,
K.
,
2018
, “
Analyzing Environmental Sustainability Methods for Use Earlier in the Product Lifecycle
,”
J. Cleaner Prod.
,
187
, pp.
877
892
.
62.
Singh
,
P. P.
, and
Madan
,
J.
,
2016
, “
A Computer-Aided System for Sustainability Assessment for the Die-Casting Process Planning
,”
Int. J. Adv. Manuf. Technol.
,
87
(
5
), pp.
1283
1298
.
63.
Ramanujan
,
D.
,
Bernstein
,
W. Z.
,
Benjamin
,
W.
,
Ramani
,
K.
,
Elmqvist
,
N.
,
Kulkarni
,
D.
, and
Tew
,
J.
,
2015
, “
A Framework for Visualization-Driven Eco-Conscious Design Exploration
,”
ASEM J. Comput. Inf. Sci. Eng.
,
15
(
4
), p.
041010
.
64.
Ferrari
,
A. M.
,
Volpi
,
L.
,
Settembre-Blundo
,
D.
, and
García-Muiña
,
F. E.
,
2021
, “
Dynamic Life Cycle Assessment (LCA) Integrating Life Cycle Inventory (LCI) and Enterprise Resource Planning (ERP) in an Industry 4.0 Environment
,”
J. Cleaner Prod.
,
286
, p.
125314
.
65.
Bernstein
,
W. Z.
,
Tamayo
,
C. D.
,
Lechevalier
,
D.
, and
Brundage
,
M. P.
,
2019
, “
Incorporating Unit Manufacturing Process Models Into Life Cycle Assessment Workflows
,”
Procedia CIRP
,
80
, pp.
364
369
.
66.
Bernstein
,
W. Z.
,
Tensa
,
M.
,
Praniewicz
,
M.
,
Kwon
,
S.
, and
Ramanujan
,
D.
,
2020
, “
An Automated Workflow for Integrating Environmental Sustainability Assessment Into Parametric Part Design Through Standard Reference Models
,”
Procedia CIRP
,
90
, pp.
102
108
.
67.
Andriankaja
,
H.
,
Le Duigou
,
J.
,
Danjou
,
C.
, and
Eynard
,
B.
,
2017
, “
Sustainable Machining Approach for CAD/CAM/CNC Systems Based on a Dynamic Environmental Assessment
,”
Proc. Inst. Mech. Eng. B
,
231
(
13
), pp.
2416
2429
.
68.
Mashhadi
,
A. R.
, and
Behdad
,
S.
,
2018
, “
Ubiquitous Life Cycle Assessment (U-LCA): A Proposed Concept for Environmental and Social Impact Assessment of Industry 4.0
,”
Manuf. Lett.
,
15
(
B
), pp.
93
96
.
69.
Wilkinson
,
M. D.
,
Dumontier
,
M.
,
Aalbersberg
,
I. J.
,
Appleton
,
G.
,
Axton
,
M.
,
Baak
,
A.
,
Blomberg
,
N.
,
Boiten
,
J.-W.
,
da Silva Santos
,
L. B.
, and
Bourne
,
P. E.
,
2016
, “
The Fair Guiding Principles for Scientific Data Management and Stewardship
,”
Sci. Data
,
3
(
1
), pp.
1
9
.
70.
Kuczenski
,
B.
,
Marvuglia
,
A.
,
Astudillo
,
M. F.
,
Ingwersen
,
W. W.
,
Satterfield
,
M. B.
,
Evers
,
D. P.
,
Koffler
,
C.
,
Navarrete
,
T.
,
Amor
,
B.
, and
Laurin
,
L.
,
2018
, “
LCA Capability Roadmap—Product System Model Description and Revision
,”
Int. J. Life Cycle Assess.
,
23
(
8
), pp.
1685
1692
.
71.
Bernstein
,
W. Z.
,
Subramaniyan
,
A. B.
,
Brodsky
,
A.
,
Garretson
,
I. C.
,
Haapala
,
K. R.
,
Libes
,
D.
,
Morris
,
K. C.
,
Pan
,
R.
,
Prabhu
,
V.
, and
Sarkar
,
A.
,
2018
, “
Research Directions for an Open Unit Manufacturing Process Repository: A Collaborative Vision
,”
Manuf. Lett.
,
15
(
B
), pp.
71
75
.
72.
Dima
,
A.
,
Lukens
,
S.
,
Hodkiewicz
,
M.
,
Sexton
,
T.
, and
Brundage
,
M. P.
,
2021
, “
Adapting Natural Language Processing for Technical Text
,”
Appl. AI Lett.
,
2
(
3
), p.
e33
.
73.
Kumar
,
V. R. S.
,
Khamis
,
A.
,
Fiorini
,
S.
,
Carbonera
,
J. L.
,
Alarcos
,
A. O.
,
Habib
,
M.
,
Goncalves
,
P.
,
Li
,
H.
, and
Olszewska
,
J. I.
,
2019
, “
Ontologies for Industry 4.0
,”
Knowl. Eng. Rev.
,
34
, p. E17. .
74.
Schweichhart
,
K.
,
2016
, “
Reference Architectural Model Industrie 4.0 (RAMI 4.0)
,” An Introduction, https://ec.europa.eu/futurium/en/system/files/ged/a2-schweichhart-reference_architectural_model_industrie_4.0_rami_4.0.pdf,
40
, Accessed February 14, 2022.
75.
Wolf
,
M.-A.
,
Kusche
,
O.
, and
Düpmeier
,
C.
,
2011
, “
The International Reference Life Cycle Data System (ILCD) Format-Basic Concepts and Implementation of Life Cycle Impact Assessment (LCIA) Method Data Sets.
,” EnviroInfo, pp.
809
817
.
76.
Frischknecht
,
R.
,
Jungbluth
,
N.
,
Althaus
,
H.-J.
,
Doka
,
G.
,
Dones
,
R.
,
Heck
,
T.
,
Hellweg
,
S.
,
Hischier
,
R.
,
Nemecek
,
T.
, and
Rebitzer
,
G.
,
2005
, “
The Ecoinvent Database: Overview and Methodological Framework (7 pp)
,”
Int. J. Life Cycle Assess.
,
10
(
1
), pp.
3
9
.
77.
Lu
,
Y.
,
Morris
,
K. C.
, and
Frechette
,
S.
,
2016
, “
Current Standards Landscape for Smart Manufacturing Systems
,”
National Institute of Standards and Technology, NISTIR
,
Gaithersburg, MD
,
8107
, p.
39
.
78.
Feng
,
S. C.
, and
Joung
,
C. B.
,
2011
, “
A Measurement Infrastructure for Sustainable Manufacturing
,”
Int. J. Sustain. Manuf.
,
2
(
2
), pp.
204
221
.
79.
Joung
,
C. B.
,
Carrell
,
J.
,
Sarkar
,
P.
, and
Feng
,
S. C.
,
2013
, “
Categorization of Indicators for Sustainable Manufacturing
,”
Ecol. Indicators
,
24
, pp.
148
157
.
80.
Feng
,
S. C.
, and
Joung
,
C. B.
,
2009
, “
An Overview of a Proposed Measurement Infrastructure for Sustainable Manufacturing
,”
Proceedings of the 7th Global Conference on Sustainable Manufacturing
,
Chennai, India
,
Dec. 2–4
,
NIST Manuscript Publication Search
, p.
12
.
81.
Kibira
,
D.
,
Brundage
,
M. P.
,
Feng
,
S.
, and
Morris
,
K. C.
,
2018
, “
Procedure for Selecting Key Performance Indicators for Sustainable Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
140
(
1
), p.
011005
.
82.
Lee
,
Y. T.
,
Kumaraguru
,
S.
,
Jain
,
S.
,
Robinson
,
S.
,
Helu
,
M.
,
Hatim
,
Q. Y.
,
Rachuri
,
S.
,
Dornfeld
,
D.
,
Saldana
,
C. J.
, and
Kumara
,
S.
,
2017
, “
A Classification Scheme for Smart Manufacturing Systems’ Performance Metrics
,”
Smart Sustain. Manuf. Syst.
,
1
(
1
), p.
20160012
.
83.
Shuaib
,
M.
,
Seevers
,
D.
,
Zhang
,
X.
,
Badurdeen
,
F.
,
Rouch
,
K. E.
, and
Jawahir
,
I. S.
,
2014
, “
Product Sustainability Index (ProdSI) A Metrics-Based Framework to Evaluate the Total Life Cycle Sustainability of Manufactured Products
,”
J. Ind. Ecol.
,
18
(
4
), pp.
491
507
, WOS:000340539000003.
84.
Huang
,
A.
, and
Badurdeen
,
F.
,
2017
, “
Sustainable Manufacturing Performance Evaluation: Integrating Product and Process Metrics for Systems Level Assessment
,”
Procedia Manuf.
,
8
, pp.
563
570
.
85.
Faulkner
,
W.
, and
Badurdeen
,
F.
,
2014
, “
Sustainable Value Stream Mapping (Sus-VSM): Methodology to Visualize and Assess Manufacturing Sustainability Performance
,”
J. Cleaner Prod.
,
85
, pp.
8
18
.
86.
Brown
,
A.
,
Amundson
,
J.
, and
Badurdeen
,
F.
,
2014
, “
Sustainable Value Stream Mapping (Sus-VSM) in Different Manufacturing System Configurations: Application Case Studies
,”
J. Cleaner Prod.
,
85
, pp.
164
179
.
87.
Choi
,
A. C. K.
,
Kaebernick
,
H.
, and
Lai
,
W. H.
,
1997
, “
Manufacturing Processes Modelling for Environmental Impact Assessment
,”
J. Mater. Process. Technol.
,
70
(
1–3
), pp.
231
238
.
88.
Sutherland
,
J. W.
, and
Gunter
,
K. L.
,
2001
, “Environmental Attributes of Manufacturing Processes,”
Handbook of Environmentally Conscious Manufacturing
,
C. N.
Madu
, ed.,
Springer
,
Boston, MA
, pp.
293
316
.
89.
Jiménez-González
,
C.
,
Kim
,
S.
, and
Overcash
,
M.
,
2000
, “
Methodology for Developing Gate-to-Gate Life Cycle Inventory Information
,”
Int. J. Life Cycle Assess.
,
5
(
3
), pp.
153
159
.
90.
Overcash
,
M.
,
Griffing
,
E.
,
Vozzola
,
E.
,
Twomey
,
J.
,
Flanagan
,
W.
, and
Isaacs
,
J.
,
2018
, “
Advancements in Unit Process Life Cycle Inventories (UPLCI) Tools
,”
Procedia CIRP
,
69
, pp.
447
450
.
91.
Overcash
,
M.
,
Twomey
,
J.
, and
Kalla
,
D.
,
2009
, “
Unit Process Life Cycle Inventory for Product Manufacturing Operations
,” ASME International Manufacturing Science and Engineering Conference,
ASME
, pp.
49
55
, Paper No. MSEC2009-84065.
92.
Shrivastava
,
A.
,
Overcash
,
M.
, and
Pfefferkorn
,
F. E.
,
2015
, “
Prediction of Unit Process Life Cycle Inventory (UPLCI) Energy Consumption in a Friction Stir Weld
,”
J. Manuf. Process.
,
18
, pp.
46
54
.
93.
Linke
,
B.
, and
Overcash
,
M.
,
2017
, “
Reusable Unit Process Life Cycle Inventory for Manufacturing: Grinding
,”
Prod. Eng.
,
11
(
6
), pp.
643
653
.
94.
Glišić
,
M.
,
Veluri
,
B.
, and
Ramanujan
,
D.
,
2021
, “
A Reusable Unit Process Life Cycle Inventory Model for Infeed Centerless Grinding
,”
Volume 5: 26th Design for Manufacturing and the Life Cycle Conference (DFMLC) of International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual, Online
,
Aug. 17–19
, p.
V005T05A025
.
95.
Simon
,
T.
,
Yang
,
Y.
,
Lee
,
W. J.
,
Zhao
,
J.
,
Li
,
L.
, and
Zhao
,
F.
,
2019
, “
Reusable Unit Process Life Cycle Inventory for Manufacturing: Stereolithography
,”
Prod. Eng. Res. Devel.
,
13
, pp.
675
684
.
96.
Raoufi
,
K.
,
Harper
,
D. S.
, and
Haapala
,
K. R.
,
2020
, “
Reusable Unit Process Life Cycle Inventory for Manufacturing: Metal Injection Molding
,”
Prod. Eng. Res. Dev.
,
14
(
5
), pp.
707
716
.
97.
Kellens
,
K.
,
Dewulf
,
W.
,
Overcash
,
M.
,
Hauschild
,
M. Z.
, and
Duflou
,
J. R.
,
2012
, “
Methodology for Systematic Analysis and Improvement of Manufacturing Unit Process Life Cycle Inventory (UPLCI) CO2PE! Initiative (Cooperative Effort on Process Emissions in Manufacturing). Part 2: Case Studies
,”
Int. J. Life Cycle Assess.
,
17
(
2
), pp.
242
251
, WOS:000299508800014.
98.
Dalquist
,
S.
, and
Gutowski
,
T.
,
2004
, “
Life Cycle Analysis of Conventional Manufacturing Techniques: Sand Casting
,”
Proceedings of ASME 2004 International Mechanical Engineering Congress and Exposition (IMECE2004)
,
Anaheim, CA
,
Nov. 13–19
, Vol.
2004
,
ASME
, pp.
631
641
.
99.
Haapala
,
K. R.
,
Catalina
,
A. V.
,
Johnson
,
M. L.
, and
Sutherland
,
J. W.
,
2012
, “
Development and Application of Models for Steelmaking and Casting Environmental Performance
,”
ASME J. Manuf. Sci. Eng.
,
134
(
5
), p.
051013
.
100.
Watkins
,
M. F.
,
Mani
,
M.
,
Lyons
,
K. W.
, and
Gupta
,
S. K.
,
2013
, “
Sustainability Characterization for Die Casting Process
,”
Proceedings of the ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 2A: 33rd Computers and Information in Engineering Conference
,
Portland, OR
,
Aug. 4–7
, ASME, p. V02AT02A006.
101.
Singh
,
P.
,
Madan
,
J.
,
Singh
,
A.
, and
Mani
,
M.
,
2012
, “
A Computer-Aided System for Sustainability Analysis for the Die-Casting Process
,”
ASME 2012 International Manufacturing Science and Engineering Conference
,
Notre Dame, IN
,
June 4–8
,
American Society of Mechanical Engineers
, pp.
1087
1096
.
102.
Thiriez
,
A.
, and
Gutowski
,
T.
,
2006
, “
An Environmental Analysis of Injection Molding
,”
Proceedings of the 2006 IEEE International Symposium on Electronics and the Environment
,
Scottsdale, AZ
,
May 8–11
,
IEEE
, pp.
195
200
.
103.
Madan
,
J.
,
Mani
,
M.
, and
Lyons
,
K. W.
,
2013
, Characterizing Energy Consumption of the Injection Molding Process,”
Proceedings of the ASME 2013 International Manufacturing Science and Engineering Conference collocated with the 41st North American Manufacturing Research Conference. Volume 2: Systems; Micro and Nano Technologies; Sustainable Manufacturing
,
Madison, WI
,
June 10–14
, ASME, p. V002T04A015.
104.
Madan
,
J.
,
Mani
,
M.
,
Lee
,
J. H.
, and
Lyons
,
K. W.
,
2015
, “
Energy Performance Evaluation and Improvement of Unit-Manufacturing Processes: Injection Molding Case Study
,”
J. Cleaner Prod.
,
105
, pp.
157
170
.
105.
Dahmus
,
J. B.
, and
Gutowski
,
T. G.
,
2004
, “
An Environmental Analysis of Machining
,”
ASME 2004 International Mechanical Engineering Congress and Exposition (IMECE2004)
,
Anaheim, CA
,
Nov. 13–19
, pp.
643
652
.
106.
Murray
,
V. R.
,
Zhao
,
F.
, and
Sutherland
,
J. W.
,
2012
, “
Life Cycle Analysis of Grinding: A Case Study of Non-Cylindrical Computer Numerical Control Grinding Via Unit-Process Life Cycle Inventory Approach
,”
Proc. Inst. Mech. Eng. B
,
226
(
10
), pp.
1604
1611
.
107.
Linke
,
B. S.
,
Corman
,
G. J.
,
Dornfeld
,
D. A.
, and
Tönissen
,
S.
,
2013
, “
Sustainability Indicators for Discrete Manufacturing Processes Applied to Grinding Technology
,”
J. Manuf. Syst.
,
32
(
4
), pp.
556
563
.
108.
Dittrich
,
M. A.
,
Gutowski
,
T. G.
,
Cao
,
J.
,
Roth
,
J. T.
,
Xia
,
Z. C.
,
Kiridena
,
V.
,
Ren
,
F.
, and
Henning
,
H.
,
2012
, “
Exergy Analysis of Incremental Sheet Forming
,”
Prod. Eng.
,
6
(
2
), pp.
169
177
.
109.
Cooper
,
D. R.
,
Rossie
,
K. E.
, and
Gutowski
,
T. G.
,
2017
, “
An Environmental and Cost Analysis of Stamping Sheet Metal Parts
,”
ASME J. Manuf. Sci. Eng.
,
139
(
4
), p.
041012
.
110.
Eastwood
,
M. D.
, and
Haapala
,
K. R.
,
2015
, “
An Induction Hardening Process Model to Assist Sustainability Assessment of a Steel Bevel Gear
,”
Int. J. Adv. Manuf. Technol.
,
80
(
5
), pp.
1113
1125
.
111.
Wang
,
J.
,
Qiao
,
F.
,
Zhao
,
F.
, and
Sutherland
,
J. W.
,
2016
, “
A Data-Driven Model for Energy Consumption in the Sintering Process
,”
ASME J. Manuf. Sci. Eng.
,
138
(
10
), p.
101001
.
112.
Diaz
,
N.
,
Ninomiya
,
K.
,
Noble
,
J.
, and
Dornfeld
,
D.
,
2012
, “
Environmental Impact Characterization of Milling and Implications for Potential Energy Savings in Industry
,”
Procedia CIRP
,
1
(10), pp.
518
523
.
113.
Alsaffar
,
A. J.
,
Raoufi
,
K.
,
Kim
,
K. -Y.
,
Kremer
,
G. E. O.
, and
Haapala
,
K. R.
,
2016
, “
Simultaneous Consideration of Unit Manufacturing Processes and Supply Chain Activities for Reduction of Product Environmental and Social Impacts
,”
ASME J. Manuf. Sci. Eng.
,
138
(10), p.
101009
.
114.
Eastwood
,
M. D.
, and
Haapala
,
K. R.
,
2015
, “
A Unit Process Model Based Methodology to Assist Product Sustainability Assessment During Design for Manufacturing
,”
J. Cleaner Prod.
,
108
, pp.
54
64
.
115.
Mani
,
M.
,
Madan
,
J.
,
Lee
,
J. H.
,
Lyons
,
K.
, and
Gupta
,
S. K.
,
2012
, “
Characterizing Sustainability for Manufacturing Performance Assessment
,”
Proceedings of the ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 2: 32nd Computers and Information in Engineering Conference, Parts A and B
,
Chicago, IL
,
Aug. 12–15
, ASME, pp.
1153
1162
.
116.
Mani
,
M.
,
Madan
,
J.
,
Lee
,
J. H.
,
Lyons
,
K. W.
, and
Gupta
,
S.
,
2014
, “
Sustainability Characterization for Manufacturing Processes
,”
Int. J. Prod. Res.
,
52
(
20
), pp.
5895
5912
.
117.
Mani
,
M.
,
Larborn
,
J.
,
Johansson
,
B.
,
Lyons
,
K. W.
, and
Morris
,
K. C.
,
2016
, “
Standard Representations for Sustainability Characterization of Industrial Processes
,”
ASME J. Manuf. Sci. Eng.
,
138
(
10
), p.
101008
.
118.
Raman
,
A. S.
,
Haapala
,
K. R.
,
Raoufi
,
K.
,
Linke
,
B. S.
,
Bernstein
,
W. Z.
, and
Morris
,
K. C.
,
2020
, “
Defining Near-Term to Long-Term Research Opportunities to Advance Metrics, Models, and Methods for Smart and Sustainable Manufacturing
,”
Smart Sustain. Manuf. Syst.
,
4
(
2
), p.
20190047
.
119.
Enyoghasi
,
C.
, and
Badurdeen
,
F.
,
2021
, “
Industry 4.0 for Sustainable Manufacturing: Opportunities at the Product, Process, and System Levels
,”
Res. Conserv. Recycling
,
166
, p.
105362
.
120.
Chen
,
X.
,
Despeisse
,
M.
, and
Johansson
,
B.
,
2020
, “
Environmental Sustainability of Digitalization in Manufacturing: A Review
,”
Sustainability
,
12
(
24
), p.
10298
.
121.
Kim
,
D. B.
,
Shin
,
S. -J.
,
Shao
,
G.
, and
Brodsky
,
A.
,
2015
, “
A Decision-Guidance Framework for Sustainability Performance Analysis of Manufacturing Processes
,”
Int. J. Adv. Manuf. Technol.
,
78
(
9
), pp.
1455
1471
.
122.
Li
,
Y.
,
Zhang
,
H.
,
Roy
,
U.
, and
Lee
,
Y. T.
,
2017
, “
A Data-Driven Approach for Improving Sustainability Assessment in Advanced Manufacturing
,”
2017 IEEE International Conference on Big Data (Big Data)
,
Boston, MA
,
Dec. 11–14
, pp.
1736
1745
.
123.
Jamwal
,
A.
,
Agrawal
,
R.
,
Sharma
,
M.
,
Kumar
,
A.
,
Kumar
,
V.
, and
Garza-Reyes
,
J. A. A.
,
2021
, “
Machine Learning Applications for Sustainable Manufacturing: A Bibliometric-Based Review for Future Research
,”
J. Enterprise Inf. Manage.
, 35(2), pp.
566
596
.
124.
Cioffi
,
R.
,
Travaglioni
,
M.
,
Piscitelli
,
G.
,
Petrillo
,
A.
, and
De Felice
,
F.
,
2020
, “
Artificial Intelligence and Machine Learning Applications in Smart Production: Progress, Trends, and Directions
,”
Sustainability
,
12
(
2
), p.
492
.
125.
Lifset
,
R.
, and
Graedel
,
T. E.
,
2002
, “
Industrial Ecology: Goals and Definitions
,”
A Handbook of Industrial Ecology
, pp.
3
15
.
126.
Zhu
,
X.
,
Ho
,
C.-H.
, and
Wang
,
X.
,
2020
, “
Application of Life Cycle Assessment and Machine Learning for High-Throughput Screening of Green Chemical Substitutes
,”
ACS Sustain. Chem. Eng.
,
8
(
30
), pp.
11141
11151
.
127.
Bertoni
,
A.
,
Dasari
,
S. K.
,
Hallstedt
,
S. I.
, and
Andersson
,
P.
,
2018
, “
Model-Based Decision Support for Value and Sustainability Assessment: Applying Machine Learning in Aerospace Product Development
,”
DS 92: Proceedings of the DESIGN 2018 15th International Design Conference
,
Dubrovnik, Croatia
,
May 21–24
, pp.
2585
2596
.
128.
Pinzone
,
M.
,
Albè
,
F.
,
Orlandelli
,
D.
,
Barletta
,
I.
,
Berlin
,
C.
,
Johansson
,
B.
, and
Taisch
,
M.
,
2020
, “
A Framework for Operative and Social Sustainability Functionalities in Human-Centric Cyber-Physical Production Systems
,”
Comput. Ind. Eng.
,
139
, p.
105132
.
129.
Papetti
,
A.
,
Gregori
,
F.
,
Pandolfi
,
M.
,
Peruzzini
,
M.
, and
Germani
,
M.
,
2018
, “
IoT to Enable Social Sustainability in Manufacturing Systems
,”
Adv. Transdiscipl. Eng.
,
7
, pp.
53
62
.
130.
Ramanujan
,
D.
,
Bernstein
,
W. Z.
,
Chandrasegaran
,
S. K.
, and
Ramani
,
K.
,
2017
, “
Visual Analytics Tools for Sustainable Lifecycle Design: Current Status, Challenges, and Future Opportunities
,”
ASME J. Mech. Des.
,
139
(
11
), p.
111415
.
131.
Ramanujan
,
D.
,
Bernstein
,
W. Z.
,
Totorikaguena
,
M. A.
,
Ilvig
,
C. F.
, and
Ørskov
,
K. B.
,
2018
, “
Generating Contextual Design for Environment Principles in Sustainable Manufacturing Using Visual Analytics
,”
ASME J. Manuf. Sci. Eng.
,
141
(
2
), p.
021016
.
132.
Dassisti
,
M.
,
Eslami
,
Y.
, and
Mohaghegh
,
M.
,
2017
, “
Raw Material Flow Optimization as a Capacitated Vehicle Routing Problem: A Visual Benchmarking Approach for Sustainable Manufacturing
,”
2017 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI)
,
Bari, Italy
,
Sept. 8–20
, pp.
168
174
.
133.
Heße
,
S.
, and
Groh
,
R.
,
2014
, “
Towards a Model for the Integration of Time Into a Graph-Based Key Performance Indicator Analysis
,” Proceedings of SIGRAD 2014, Visual Computing, June 12–13, Göteborg, Sweden,
Linköping University Electronic Press
, pp.
17
23
.
134.
Brundage
,
M. P.
,
Bernstein
,
W. Z.
,
Morris
,
K.
, and
Horst
,
J. A.
,
2017
, “
Using Graph-Based Visualizations to Explore Key Performance Indicator Relationships for Manufacturing Production Systems
,”
Procedia CIRP
,
61
, pp.
451
456
, The 24th CIRP Conference on Life Cycle Engineering.
135.
Hopf
,
H.
, and
Müller
,
E.
,
2015
, “
Providing Energy Data and Information for Sustainable Manufacturing Systems by Energy Cards
,”
Rob. Comput.-Integrated Manuf.
,
36
, pp.
76
83
, Sustaining Resilience in Today’s Demanding Environments.
136.
Baily
,
M.
, and
Manyika
,
J.
,
2013
, “
Is Manufacturing ‘Cool’ Again?
,” https://www.mckinsey.com/mgi/overview/in-the-news/is-manufacturing-cool-again, Accessed August 8, 2021.
137.
Henke
,
N.
,
Chui
,
M.
,
Manyika
,
J.
,
Saleh
,
T.
,
Wiseman
,
B.
, and
Sethupathy
,
G.
,
2016
, “
The Age of Analytics: Competing in a Data-Driven World
,”
McKinsey& Company, McKinsey Global Institute
, Technical Report. https://www.mckinsey.com/~/media/mckinsey/industries/public%20and%20social%20sector/our%20insights/the%20age%20of%20analytics%20competing%20in%20a%20data%20driven%20world/mgi-the-age-of-analytics-full-report.pdf
138.
Zhang
,
H.
, and
Haapala
,
K. R.
,
2015
, “
Integrating Sustainable Manufacturing Assessment Into Decision Making for a Production Work Cell
,”
J. Cleaner Prod.
,
105
, pp.
52
63
, Decision-Support models and tools for helping to make real progress to more sustainable societies.
139.
Eslami
,
Y.
,
Lezoche
,
M.
,
Panetto
,
H.
, and
Dassisti
,
M.
,
2021
, “
On Analysing Sustainability Assessment in Manufacturing Organisations: A Survey
,”
Int. J. Prod. Res.
,
59
(
13
), pp.
4108
4139
.
140.
Kumar
,
M.
, and
Mani
,
M.
,
2021
, “
Chapter 11—Sustainability Assessment in Manufacturing: Perspectives, Challenges, and Solutions
,”
Sustainable Manufacturing
,
Gupta
,
K.
, and
Salonitis
,
K.
, eds.,
Handbooks in Advanced Manufacturing
,
Elsevier
, pp.
287
311
.
141.
Ramanujan
,
D.
,
Bernstein
,
W. Z.
,
Choi
,
J.-K.
,
Koho
,
M.
,
Zhao
,
F.
, and
Ramani
,
K.
,
2014
, “
Prioritizing Design for Environment Strategies Using a Stochastic Analytic Hierarchy Process
,”
ASME J. Mech. Des.
,
136
(
7
), p.
071002
.
142.
Badurdeen
,
F.
, and
Jawahir
,
I.
,
2017
, “
Strategies for Value Creation Through Sustainable Manufacturing
,”
Procedia Manuf.
,
8
, pp.
20
27
, 14th Global Conference on Sustainable Manufacturing, GCSM 3-5 October 2016, Stellenbosch, South Africa.
143.
Moldavska
,
A.
, and
Welo
,
T.
,
2016
, “
Development of Manufacturing Sustainability Assessment Using Systems Thinking
,”
Sustainability
,
8
(
1
), p.
5
.
144.
Dornfeld
,
D. A.
,
2014
, “
Moving Towards Green and Sustainable Manufacturing
,”
Int. J. Prec. Eng. Manuf.-Green Technol.
,
1
(
1
), pp.
63
66
.
145.
Raoufi
,
K.
,
Taylor
,
C.
,
Laurin
,
L.
, and
Haapala
,
K. R.
,
2019
, “
Visual Communication Methods and Tools for Sustainability Performance Assessment: Linking Academic and Industry Perspectives
,”
Procedia CIRP
,
80
, pp.
215
220
, 26th CIRP Conference on Life Cycle Engineering (LCE) Purdue University, West Lafayette, IN, USA May 7–9, 2019.
146.
Ramanujan
,
D.
,
Bernstein
,
W. Z.
, and
Ramani
,
K.
,
2017
, “
Design Patterns for Visualization-Based Tools in Sustainable Product Design
,”
Vol. 4: 22nd Design for Manufacturing and the Life Cycle Conference of International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Cleveland, OH
,
Aug. 6–9
, p.
V004T05A042
.
147.
Rachuri
,
S.
,
Dornfeld
,
D.
,
Kumara
,
S.
,
Morris
,
K.
,
Rachuri
,
S.
, and
Roy
,
U.
,
2013
,
Sustainable Manufacturing Program Workshop Report
,
US Department of Commerce, National Institute of Standards and Technology
,
Gaithersburg, MD
.
148.
Zhang
,
H.
,
Veltri
,
A.
,
Calvo-Amodio
,
J.
, and
Haapala
,
K. R.
,
2021
, “
Making the Business Case for Sustainable Manufacturing in Small and Medium-Sized Manufacturing Enterprises: A Systems Decision Making Approach
,”
J. Cleaner Prod.
,
287
, p.
125038
.
149.
Rückert
,
M.
,
Merkelbach
,
S.
,
Alt
,
R.
, and
Schmitz
,
K.
,
2018
, “
Online Life Cycle Assessment for Fluid Power Manufacturing Systems—Challenges and Opportunities
,”
Advances in Production Management Systems. Smart Manufacturing for Industry 4.0, APMS 2018. IFIP Advances in Information and Communication Technology, vol 536
,
Moon
,
I.
,
Lee
,
G. M.
,
Park
,
J.
,
Kiritsis
,
D.
, and
von Cieminski
,
G.
, eds.,
Springer International Publishing
,
Cham
, pp.
128
135
.
150.
ASTM International
,
2018
,
Standard Guide for Definition, Selection, and Organization of Key Performance Indicators for Environmental Aspects of Manufacturing Processes. ASTM E23096-18 Standard
,
ASTM International
,
West Conshohocken, PA
.
151.
Adadi
,
A.
, and
Berrada
,
M.
,
2018
, “
Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI)
,”
IEEE Access
,
6
, pp.
52138
52160
.
152.
Romero
,
D.
,
Bernus
,
P.
,
Noran
,
O.
,
Stahre
,
J.
, and
Fast-Berglund
,
Å.
,
2016
, “
The Operator 4.0: Human Cyber-Physical Systems & Adaptive Automation Towards Human-Automation Symbiosis Work Systems
,”
Advances in Production Management Systems. Initiatives for a Sustainable World, APMS 2016. IFIP Advances in Information and Communication Technology, vol 488
,
Nääs
,
I.
,
Vendrametto
,
O.
,
Mendes Reis
,
J.
,
Gonçalves
,
R. F.
,
Silva
,
M. T.
,
von Cieminski
,
G.
, and
Kiritsis
,
D.
, eds.,
Springer International Publishing
,
Cham
, pp.
677
686
.
153.
Building the Digital Thread for Circular Economy Product, Resource & Service Management
,” https://cordis.europa.eu/project/id/958448, Accessed November 11, 2021.
154.
Ontology-Driven Data Documentation for Industry Commons
,” https://cordis.europa.eu/project/id/958371, Accessed November 11, 2021.
155.
Essential Decision-Making Skills for the Future Workforce in Smart Manufacturing
, https://www.nsf.gov/awardsearch/showAward?AWD_ID=2026283, Accessed November 11, 2021.
156.
SAE International
,
2018
, “
JA6268: Design & Run-Time Information Exchange for Health-Ready Components
,”
SAE International
, Technical Report, Report No. JA6268_201804.
157.
Committee, H.-. I. V. H. M.
,
2016
, “
IVHM Concepts, Technology and Implementation Overview
,”
158.
Qu
,
Y. J.
,
Ming
,
X. G.
,
Liu
,
Z. W.
,
Zhang
,
X. Y.
, and
Hou
,
Z. T.
,
2019
, “
Smart Manufacturing Systems: State of the Art and Future Trends
,”
Int. J. Adv. Manuf. Technol.
,
103
(
9
), pp.
3751
3768
.
159.
Diaz-Elsayed
,
N.
,
Hernandez
,
L.
, and
Rajamani
,
R.
,
2021
, “
A Framework for the Health-Ready Characterization of Manufacturing Systems
,”
Manuf. Lett.
,
29
, pp.
56
60
.
160.
Qin
,
J.
,
Liu
,
Y.
, and
Grosvenor
,
R.
,
2016
, “
A Categorical Framework of Manufacturing for Industry 4.0 and Beyond
,” Procedia CIRP, Vol.
52
, pp.
173
178
.
161.
Zhou
,
L.
,
Li
,
J. J.
,
Li
,
F.
,
Meng
,
Q.
,
Li
,
J. J.
, and
Xu
,
X.
,
2016
, “
Energy Consumption Model and Energy Efficiency of Machine Tools: A Comprehensive Literature Review
,”
J. Cleaner Prod.
,
112
, pp.
3721
3734
.
162.
Duflou
,
J. R.
,
Sutherland
,
J. W.
,
Dornfeld
,
D.
,
Herrmann
,
C.
,
Jeswiet
,
J.
,
Kara
,
S.
,
Hauschild
,
M.
, and
Kellens
,
K.
,
2012
, “
Towards Energy and Resource Efficient Manufacturing: A Processes and Systems Approach
,”
CIRP Ann.
,
61
(
2
), pp.
587
609
.
163.
Deng
,
Z.
,
Zhang
,
H.
,
Fu
,
Y.
,
Wan
,
L.
, and
Liu
,
W.
,
2017
, “
Optimization of Process Parameters for Minimum Energy Consumption Based on Cutting Specific Energy Consumption
,”
J. Cleaner Prod.
,
166
(
Nov
), pp.
1407
1414
.
164.
Xiao
,
Q.
,
Li
,
C.
,
Tang
,
Y.
,
Li
,
L.
, and
Li
,
L.
,
2019
, “
A Knowledge-Driven Method of Adaptively Optimizing Process Parameters for Energy Efficient Turning
,”
Energy
,
166
, pp.
142
156
.
165.
Hu
,
L.
,
Tang
,
R.
,
Liu
,
Y.
,
Cao
,
Y.
, and
Tiwari
,
A.
,
2018
, “
Optimising the Machining Time, Deviation and Energy Consumption Through a Multi-Objective Feature Sequencing Approach
,”
Energy Convers. Manage.
,
160
, pp.
126
140
.
166.
Feng
,
Y.
,
Hong
,
Z.
,
Li
,
Z.
,
Zheng
,
H.
, and
Tan
,
J.
,
2020
, “
Integrated Intelligent Green Scheduling of Sustainable Flexible Workshop With Edge Computing Considering Uncertain Machine State
,”
J. Cleaner Prod.
,
246
, p.
119070
.
167.
Shao
,
H.
,
Wang
,
H.
, and
Zhao
,
X.
,
2004
, “
A Cutting Power Model for Tool Wear Monitoring in Milling
,”
Int. J. Mach. Tools Manuf.
,
44
(
14
), pp.
1503
1509
.
168.
Caggiano
,
A.
,
2018
, “
Tool Wear Prediction in Ti-6Al-4V Machining Through Multiple Sensor Monitoring and PCA Features Pattern Recognition
,”
Sensors
,
18
(
3
), pp.
1
14
.
169.
Uekita
,
M.
, and
Takaya
,
Y.
,
2017
, “
Tool Condition Monitoring for Form Milling of Large Parts by Combining Spindle Motor Current and Acoustic Emission Signals
,”
Int. J. Adv. Manuf. Technol.
,
89
(
1–4
), pp.
65
75
.
170.
Li
,
F.
,
Shi
,
Y.
,
Shinde
,
A.
,
Ye
,
J.
, and
Song
,
W.
,
2019
, “
Enhanced Cyber-Physical Security in Internet of Things Through Energy Auditing
,”
IEEE Internet Things J.
,
6
(
3
), pp.
5224
5231
.
171.
He
,
Y.
,
Wu
,
P.
,
Li
,
Y.
,
Wang
,
Y.
,
Tao
,
F.
, and
Wang
,
Y.
,
2020
, “
A Generic Energy Prediction Model of Machine Tools Using Deep Learning Algorithms
,”
Appl. Energy
,
275
, p.
115402
.
172.
Boettjer
,
T.
,
Thoft Krogshave
,
J.
, and
Ramanujan
,
D.
,
2021
, “
Machine-Specific Estimation of Milling Energy Consumption in Detailed Design
,”
ASME J. Manuf. Sci. Eng.
,
143
(
8
), p.
081010
.
173.
Bernstein
,
W. Z.
,
Boettjer
,
T.
, and
Ramanujan
,
D.
,
2021
, “
Quantifying Life Cycle Inventories for Machining Processes at Detailed Design
,”
Procedia CIRP
,
98
, pp.
370
375
.
174.
Gutowski
,
T.
,
Dahmus
,
J.
, and
Thiriez
,
A.
,
2006
, “
Electrical Energy Requirements for Manufacturing Processes
,”
13th CIRP International Conference of Life Cycle Engineering
,
Leuven, Belgium
,
May 31–June 2
, pp.
623
628
.
175.
Kara
,
S.
, and
Li
,
W.
,
2011
, “
Unit Process Energy Consumption Models for Material Removal Processes
,”
CIRP Ann.
,
60
(
1
), pp.
37
40
.
176.
Diaz
,
N.
,
Redelsheimer
,
E.
, and
Dornfeld
,
D.
,
2011
, “Energy Consumption Characterization and Reduction Strategies for Milling Machine Tool Use,”
Glocalized Solutions for Sustainability in Manufacturing
,
Springer
,
Berlin/Heidelberg
, pp.
263
267
.
177.
Jena
,
M. C.
,
Mishra
,
S. K.
, and
Moharana
,
H. S.
,
2020
, “
Application of Industry 4.0 to Enhance Sustainable Manufacturing
,”
Environ. Prog. Sustain. Energy
,
39
, p. e13360.
178.
Li
,
P.
, and
Jiang
,
P.
,
2021
, “
Enhanced Agents in Shared Factory: Enabling High-Efficiency Self-Organization and Sustainability of the Shared Manufacturing Resources
,”
J. Cleaner Prod.
,
292
, p.
126020
.
179.
Franciosi
,
C.
,
Di Pasquale
,
V.
,
Iannone
,
R.
, and
Miranda
,
S.
,
2021
, “
Multi-Stakeholder Perspectives on Indicators for Sustainable Maintenance Performance in Production Contexts: An Exploratory Study
,”
J. Quality Maintenance Eng.
,
27
(
2
), pp.
308
330
.
180.
Holgado
,
M.
,
Macchi
,
M.
, and
Evans
,
S.
,
2020
, “
Exploring the Impacts and Contributions of Maintenance Function for Sustainable Manufacturing
,”
Int. J. Prod. Res.
,
58
(
23
), pp.
7292
7310
.
181.
Jasiulewicz-Kaczmarek
,
M.
,
Antosz
,
K.
,
Wyczółkowski
,
R.
,
Mazurkiewicz
,
D.
,
Sun
,
B.
,
Qian
,
C.
, and
Ren
,
Y.
,
2021
, “
Application of MICMAC, Fuzzy AHP, and Fuzzy TOPSIS for Evaluation of the Maintenance Factors Affecting Sustainable Manufacturing
,”
Energies
,
14
(
5
), p.
1436
.
182.
Sénéchal
,
O.
, and
Trentesaux
,
D.
,
2019
, “
A Framework to Help Decision Makers to Be Environmentally Aware During the Maintenance of Cyber Physical Systems
,”
Environ. Impact Assess. Rev.
,
77
, pp.
11
22
.
183.
Sénéchal
,
O.
,
2017
, “
Research Directions for Integrating the Triple Bottom Line in Maintenance Dashboards
,”
J. Cleaner Prod.
,
142
(
1
), pp.
331
342
.
184.
Byrne
,
G.
,
Dimitrov
,
D.
,
Monostori
,
L.
,
Teti
,
R.
,
van Houten
,
F.
, and
Wertheim
,
R.
,
2018
, “
Biologicalisation: Biological Transformation in Manufacturing
,”
CIRP J. Manuf. Sci. Technol.
,
21
, pp.
1
32
.
185.
Industry 5.0: Towards More Sustainable, Resilient and Human-Centric Industry
, https://ec.europa.eu/info/news/industry-50-towards-more-sustainable-resilient-and-human-centric-industry-2021-jan-07_en, Accessed November 11, 2021.
You do not currently have access to this content.