Abstract

In this work, a new smoothed particle hydrodynamics (SPH)-based model is developed to simulate the removal process of thermal barrier coatings (TBCs) using the abrasive water jet (AWJ) technique. The effects of water jet abrasive particle concentration, incident angle, and impacting time on the fracture behavior of the TBCs are investigated. The Johnson–Holmquist plasticity damage model (JH-2 model) is used for the TBC material, and abrasive particles are included in the water jet model. The results show that the simulated impact hole profiles are in good agreement with the experimental observation in the literature. Both the width and depth of the impact pit holes increase with impacting time. The deepest points in the pit hole shift gradually to the right when a 30-deg water jet incident angle is used because the water jet comes from the right side, which is more effective in removing the coatings on the right side. A higher concentration of abrasive particles increases both the width and depth, which is consistent with the experimental data. The depths of the impact pit holes increase with the water jet incident angle, while the width of the impact holes decreases with the increase in the water jet incident angle. The water jet incident angle dependence can be attributed to the vertical velocity components. The erosion rate increases with the incidence angle, which shows a good agreement with the analytical model. As the water jet incident angle increases, more vertical velocity component contributes to the kinetic energy which is responsible for the erosion process.

References

1.
Zhang
,
J.
, and
Jung
,
Y.-G.
,
2018
,
Advanced Ceramic and Metallic Coating and Thin Film Materials for Energy and Environmental Applications
,
Springer International Publishing
,
New York
.
2.
Murugan
,
M.
,
Ghoshal
,
A.
,
Walock
,
M.
,
Nieto
,
A.
,
Bravo
,
L.
,
Barnett
,
B.
,
Pepi
,
M.
,
Swab
,
J.
,
Pegg
,
R. T.
, and
Rowe
,
C.
,
2017
, “
Microstructure Based Material-Sand Particulate Interactions and Assessment of Coatings for High Temperature Turbine Blades
,”
ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
,
Charlotte, NC
,
June 26–30
.
3.
Yang
,
X.
,
Zhang
,
J.
,
Lu
,
Z.
,
Park
,
H. Y.
,
Jung
,
Y. G.
,
Park
,
H.
,
Koo
,
D. D.
,
Sinatra
,
R.
, and
Zhang
,
J.
,
2020
, “
Removal and Repair Techniques for Thermal Barrier Coatings: A Review
,”
Trans. IMF
,
98
(
3
), pp.
121
128
.
4.
Bergs
,
T.
,
Borrmann
,
J. P.
,
Schüler
,
M.
,
Herrig
,
T.
, and
Döring
,
J. E.
,
2019
, “
Pure Waterjet Controlled Depth Machining for Stripping Ceramic Thermal Barrier Coatings on Turbine Blades
,”
Procedia CIRP
,
85
, pp.
261
265
.
5.
Ahmed
,
T. M.
,
El Mesalamy
,
A. S.
,
Youssef
,
A.
, and
El Midany
,
T. T.
,
2018
, “
Improving Surface Roughness of Abrasive Waterjet Cutting Process by Using Statistical Modeling
,”
CIRP J. Manuf. Sci. Technol.
,
22
, pp.
30
36
.
6.
Thompson
,
W
,
2011
, Coating Removal for Turbine Components Modern Machine Shop, https://www.mmsonline.com/articles/coating-removal-for-turbine-components, Accessed June 18, 2021.
7.
Kalpana
,
K.
,
Mythreyi
,
O.
, and
Kanthababu
,
M.
,
2015
, “
Review on Condition Monitoring of Abrasive Water Jet Machining System
,”
Proceedings of the 2015 International Conference on Robotics, Automation, Control and Embedded Systems (RACE)
,
Chennai, India
,
Feb. 18–20
, IEEE, pp.
1
7
.
8.
Zhao
,
K.
,
Gao
,
C.
,
Liu
,
Z.
, and
Guo
,
C.
,
2018
, “
Investigation of Removing Thermal Barrier Coatings From Nickel Based Super-Alloy Using Abrasive Water Jet
,”
Proceedings of the 2018 3rd International Conference on Insulating Materials, Material Application and Electrical Engineering (IMMAEE 2018)
,
Melbourne, Australia
,
Sept. 15–16
, IOP Publishing, p.
022112
.
9.
Liu
,
X.
,
Tang
,
P.
,
Geng
,
Q.
, and
Wang
,
X.
,
2019
, “
Effect of Abrasive Concentration on Impact Performance of Abrasive Water Jet Crushing Concrete
,”
Shock Vib.
,
2019
, pp.
1
18
.
10.
Shahverdi
,
H.
,
Zohoor
,
M.
, and
Mousavi
,
S. M.
,
2011
, “
Numerical Simulation of Abrasive Water jet Cutting Process using the SPH and ALE Methods
,”
Int. J. Adv. Des. Manuf. Technol.
,
5
(
1
), pp.
43
50
.
11.
Guo
,
L.
,
Deng
,
S.
, and
Yang
,
X.
,
2016
, “
Numerical Simulation of Abrasive Water Jet Cutting Chemical Pipeline Based on SPH Coupled FEM
,”
Chem. Eng. Trans.
,
51
, pp.
73
78
.
12.
Ngangkham Peter Singh
,
D. S. S.
, and
Ramesh Babu
,
N.
,
2017
, “
Thermal Analysis of Abrasive Waterjet Machining Process
,”
Proceedings of 10th International Conference on Precision, Meso and Nano Engineering
,
Chennai, Tamilnadu, India
,
Dec. 7–9
.
13.
Liu
,
G. R.
,
Liu
,
M. B.
, and
Li
,
S.
,
2004
, “
Smoothed Particle Hydrodynamics—A Meshfree Method
,”
Computat. Mech.
,
33
(
6
), pp.
491
491
.
14.
Liu
,
G. R.
, and
Liu
,
M. B.
,
2003
,
Smoothed Particle Hydrodynamics
,
World Scientific Publishing Co., Inc.
,
Hackensack, NJ
.
15.
Liu
,
G.-R.
, and
Gu
,
Y.-T.
,
2005
,
An Introduction to Meshfree Methods and Their Programming
,
Springer
,
New York, NY
.
16.
Guha
,
A.
,
Barron
,
R. M.
, and
Balachandar
,
R.
,
2011
, “
An Experimental and Numerical Study of Water Jet Cleaning Process
,”
J. Mater. Process. Technol.
,
211
(
4
), pp.
610
618
.
17.
Cronin
,
D. S.
,
Bui
,
K.
,
Kaufmann
,
C.
,
McIntosh
,
G.
,
Berstad
,
T.
, and
Cronin
,
D.
,
2003
, “
Implementation and Validation of the Johnson-Holmquist Ceramic Material Model in LS-Dyna
,”
Proceedings of the 4th European LS-DYNA Users Conference
,
Ulm, Germany
,
May 22–23
, pp.
47
60
.
18.
Zhao
,
Z.
,
Feng
,
D.
,
Fang
,
Q.
,
Song
,
J.
, and
Song
,
N.
,
2017
, “
Dynamics Simulation of Photonic Crystal Fiber End Face Polishing
,”
Adv. Mech. Eng.
,
9
(
6
), p.
168781401771181
.
19.
Hallquist
,
J. O.
,
2007
, “
LS-DYNA Keyword User’s Manual
,”
Livermore Soft. Technol. Corp.
,
970
, pp.
299
800
.
20.
Denga
,
B.
,
Yanga
,
M.
,
Zhoua
,
L.
,
Wanga
,
H.
,
Yana
,
R.
, and
Penga
,
F.
,
2019
, “
Smoothed Particle Hydrodynamics (SPH) Simulation and Experimental Investigation on the Diamond Fly-Cutting Milling of Zirconia Ceramics
,”
Procedia CIRP
,
82
, pp.
202
207
.
21.
Vahedi
,
K.
, and
Khazraiyan
,
N.
,
2004
, “
Numerical Modeling of Ballistic Penetration of Long Rods Into Ceramic/Metal Armors
,”
Proceedings of the 8th International LS-DYNA Users Conference
, pp.
39
50
.
22.
Schulson
,
E. M.
,
1999
, “
Structure and Mechanical Behavior of Ice
,”
JOM
,
51
(
2
), pp.
21
27
.
23.
Zeng
,
J.
, and
Kim
,
T. J.
,
1996
, “
An Erosion Model for Abrasive Waterjet Milling of Polycrystalline Ceramics
,”
Wear
,
199
(
2
), pp.
275
282
.
24.
Zeng
,
J.
, and
Kim
,
T. J.
,
1996
, “
An Erosion Model of Polycrystalline Ceramics in Abrasive Waterjet Cutting
,”
Wear
,
193
(
2
), pp.
207
217
.
25.
Kumar
,
A. N.
, and
Sørensen
,
B. F.
,
2002
, “
Fracture Energy and Crack Growth in Surface Treated Yttria Stabilized Zirconia for SOFC Applications
,”
Mater. Sci. Eng. A
,
333
(
1–2
), pp.
380
389
.
26.
Tang
,
F.
, and
Schoenung
,
J. M.
,
2006
, “
Evolution of Young’s Modulus of Air Plasma Sprayed Yttria-Stabilized Zirconia in Thermally Cycled Thermal Barrier Coatings
,”
Scr. Mater.
,
54
(
9
), pp.
1587
1592
.
You do not currently have access to this content.