Abstract

Laser-induced plasma micro-machining (LIPMM) process does well in fabricating high-quality surface microstructures of hard and brittle materials. However, the liquid medium is overheated to induce lots of bubbles to defocus the laser beam, reducing machining stability, and explosive behavior of bubbles destroys the surface quality. Thus, the static and dynamical behaviors of bubbles in LIPMM are comprehensively investigated in this article. First, a series of mechanisms including bubble generation and growth, bubble motion and explosion, and the effect of bubbles behavior on machining characteristics were explained. Second, a volume of fluid (VOF) model of bubble motions in laser-induced plasma micro-machining was established to simulate the dynamical behavior of bubbles under different depths of water layer, which reflect the growth of microbubbles, the aggregation of multiple bubbles, and the floating movement of bubbles. Then, a series of experiments were carried out to reveal bubble static behaviors, and further bubble explosion behaviors on surface integrity, surface defects, and hardness were analyzed. The increase of laser frequency leads to the increase of the maximum attached bubble size. Obstructed by bubble dynamical behaviors, a discontinuous section and the unablated area are observed in the microchannel. The elastic modulus and surface hardness of surface impacted by explosion bubbles are reduced. This research contributes to better understanding bubble behavior related to machining performances in LIPMM of single-crystal silicon.

References

1.
Lei
,
S.
,
Zhao
,
X.
,
Yu
,
X.
,
Hu
,
A.
,
Vukelic
,
S.
,
Jun
,
M.
,
Joe
,
H.
,
Yao
,
Y.
, and
Shin
,
Y.
,
2020
, “
Ultrafast Laser Applications in Manufacturing Processes: A State-of-the-Art Review
,”
ASME J. Manuf. Sci. Eng.
,
142
(
3
), p.
031005
.
2.
Malhotra
,
R.
,
Saxena
,
I.
,
Ehmann
,
K.
, and
Cao
,
J.
,
2013
, “
Laser-induced Plasma Micro-Machining (LIPMM) for Enhanced Productivity and Flexibility in Laser-Based Micro-Machining Processes
,”
CIRP Ann. Manuf. Technol.
,
62
(
1
), pp.
211
214
.
3.
Saxena
,
I.
,
Ehmann
,
K.
, and
Cao
,
J.
,
2015
, “
High Throughput Microfabrication Using Laser Induced Plasma in Saline Aqueous Medium
,”
J. Mater. Process. Technol.
,
217
(
3
), pp.
77
87
.
4.
Zhou
,
J.
,
Xu
,
R.
,
Jiao
,
H.
,
Bao
,
J.
,
Liu
,
Q.
, and
Long
,
Y.
,
2020
, “
Study on the Mechanism of Ultrasonic-Assisted Water Confined Laser Micromachining of Silicon
,”
Opt. Lasers Eng.
,
132
(
9
), p.
106118
.
5.
Wang
,
M.
,
Wang
,
B.
, and
Zheng
,
Y.
,
2015
, “
Weakening of the Anisotropy of Surface Roughness in Ultra-Precision Turning of Single-Crystal Silicon
,”
Chin. J. Aeronaut.
,
28
(
4
), pp.
1273
1280
.
6.
Wang
,
J.
,
Zhang
,
X.
,
Fang
,
F.
, and
Chen
,
R.
,
2019
, “
Diamond Cutting of Micro-Structure Array on Brittle Material Assisted by Multi-Ion Implantation
,”
Int. J. Mach. Tools Manuf.
,
137
(
2
), pp.
58
66
.
7.
Muhammad
,
N.
, and
Li
,
L.
,
2012
, “
Underwater Femtosecond Laser Micromachining of Thin Nitinol Tubes for Medical Coronary Stent Manufacture
,”
Appl. Phys. A
,
107
(
4
), pp.
849
861
.
8.
Naoki
,
I.
,
Hong
,
D.
, and
Kazuyoshi
,
F.
,
2014
, “
Optimization of Near-Infrared Laser Drilling of Silicon Carbide Under Water
,”
Int. J. Heat Mass Transfer
,
71
(
4
), pp.
515
520
.
9.
Fang
,
Z.
,
Chen
,
L.
,
Guan
,
Y.
, and
Zheng
,
H.
,
2020
, “
Picosecond Laser Micromachining of Silicon Wafer: Characterizations and Electrical Properties
,”
Surf. Rev. Lett.
,
27
(
5
), p.
1950142
.
10.
Charee
,
W.
, and
Tangwarodomnukun
,
V.
,
2018
, “
Dynamic Features of Bubble Induced by a Nanosecond Pulse Laser in Still and Flowing Water
,”
Opt. Laser Technol.
,
100
(
3
), pp.
230
243
.
11.
Zhang
,
Y.
,
Zhang
,
G.
,
Zhang
,
Z.
,
Zhang
,
Y.
, and
Huang
,
Y.
,
2022
, “
Effect of Assisted Transverse Magnetic Field on Distortion Behavior of Thin-Walled Components in WEDM Process
,”
Chin. J. Aeronaut.
,
35
(
2
), pp.
291
307
.
12.
Zhang
,
Y.
,
Liu
,
Y.
,
Bhandari
,
S.
,
Zhang
,
G.
,
Deng
,
J.
,
Zhang
,
Z.
, and
Ehmann
,
K.
,
2021
, “
Investigation of the Capabilities of Transverse Magnetic Field Controlled Laser-Induced Plasma Micro-Machining
,”
ASME J. Manuf. Sci. Eng.
,
143
(
6
), p.
061002
.
13.
Zhang
,
Y.
,
Zhang
,
Z.
,
Zhang
,
Y.
,
Liu
,
D.
,
Wu
,
J.
,
Huang
,
Y.
, and
Zhang
,
G.
,
2021
, “
Study on Machining Characteristics of Magnetically Controlled Laser Induced Plasma Micro-Machining Single-Crystal Silicon
,”
J. Adv. Res.
,
30
(
5
), pp.
39
51
.
14.
Wang
,
X.
,
Huang
,
Y.
,
Xu
,
B.
,
Xing
,
Y.
, and
Kang
,
M.
,
2019
, “
Comparative Assessment of Picosecond Laser Induced Plasma Micromachining Using Still and Flowing Water
,”
Opt. Laser Technol.
,
119
(
11
), p.
105623
.
15.
Mehrafsun
,
S.
, and
Vollertsen
,
F.
,
2013
, “
Disturbance of Material Removal in Laser-Chemical Machining by Emerging gas
,”
CIRP Ann. Manuf. Technol.
,
62
(
1
), pp.
195
198
.
16.
Ren
,
X.
,
He
,
H.
,
Tong
,
Y.
,
Ren
,
Y.
,
Yuan
,
S.
,
Liu
,
R.
,
Zuo
,
C.
,
Wu
,
K.
,
Sui
,
S.
, and
Wang
,
D.
,
2016
, “
Experimental Investigation on Dynamic Characteristics and Strengthening Mechanism of Laser-Induced Cavitation Bubbles
,”
Ultrason. Sonochem.
,
32
(
9
), pp.
218
223
.
17.
Nath
,
A.
, and
Khare
,
A.
,
2011
, “
Transient Evolution of Multiple Bubbles in Laser Induced Breakdown in Water
,”
Laser Part. Beams
,
29
(
1
), pp.
1
9
.
18.
Mehrafsun
,
S.
,
Messaoudi
,
H.
, and
Vollertsen
,
F.
,
2016
, “
Influence of Material and Surface Roughness on gas Bubble Formation and Adhesion in Laser-Chemical Machining
,”
Proceedings of the 5th International Conference on Nanomanufacturing
,
Macau, China
,
Aug. 15–17
, pp.
1
10
.
19.
Gu
,
J.
,
Luo
,
C.
,
Lu
,
Z.
,
Ma
,
P.
, and
Ren
,
X.
,
2021
, “
Bubble Dynamic Evolution, Material Strengthening and Chemical Effect Induced by Laser Cavitation Peening
,”
Ultrason. Sonochem.
,
72
(
4
), p.
105441
.
20.
Han
,
B.
,
Liu
,
L.
,
Zhao
,
X.
, and
Ni
,
X.
,
2017
, “
Liquid jet Formation Through the Interactions of a Laser-Induced Bubble and a Gas Bubble
,”
AIP Adv.
,
7
(
10
), p.
105305
.
21.
Nguyen
,
T.
,
Tanabe-Yamagishi
,
R.
, and
Ito
,
Y.
,
2020
, “
Effects of Liquid Depth on the Expansion and Collapse of a Hemispherical Cavitation Bubble Induced in Nanosecond Pulsed Laser Ablation of a Solid in Liquid
,”
Opt. Lasers Eng.
,
126
(
3
), p.
105937
.
22.
Lam
,
J.
,
Lombard
,
J.
,
Dujardin
,
C.
,
Ledoux
,
G.
,
Merabia
,
S.
, and
Amans
,
D.
,
2016
, “
Dynamical Study of Bubble Expansion Following Laser Ablation in Liquids
,”
Appl. Phys. Lett.
,
108
(
7
), p.
074104
.
23.
Faccio
,
D.
,
Tamosauskas
,
G.
,
Rubino
,
E.
,
Darginavicius
,
J.
,
Papazoglou
,
D.
,
Tzortzakis
,
S.
,
Couairon
,
A.
, and
Dubietis
,
A.
,
2012
, “
Cavitation Dynamics and Directional Microbubble Ejection Induced by Intense Femtosecond Laser Pulses in Liquids
,”
Phys. Rev. E
,
86
(
3
), pp.
36304
36304
.
24.
Shih
,
C.
,
Streubel
,
R.
,
Heberle
,
J.
,
Letzel
,
A.
,
Shugaev
,
M.
,
Wu
,
C.
,
Schmidt
,
M.
,
Gokce
,
B.
,
Barcikowski
,
S.
, and
Zhigilei
,
L.
,
2018
, “
Two Mechanisms of Nanoparticle Generation in Picosecond Laser Ablation in Liquids: The Origin of the Bimodal Size Distribution
,”
Nanoscale
,
10
(
15
), pp.
6900
6911
.
25.
Huang
,
H.
, and
Zhigilei
,
L.
,
2021
, “
Atomistic View of Laser Fragmentation of Gold Nanoparticles in a Liquid Environment
,”
J. Phys. Chem. C
,
125
(
24
), pp.
13413
13432
.
26.
Qi
,
P.
,
Su
,
Q.
,
Lin
,
L.
, and
Liu
,
W.
,
2018
, “
Bubble Dynamics Driven by a Few Successive Femtosecond Laser Pulses in Methanol Under 1 kHz
,”
J. Opt. Soc. Am. B
,
35
(
11
), p.
2727
.
27.
Fursenko
,
R.
,
Chudnovskii
,
V.
,
Minaev
,
S.
, and
Okajima
,
J.
,
2020
, “
Mechanism of High Velocity jet Formation After a Gas Bubble Collapse Near the Micro Fiber Immersed in a Liquid
,”
Int. J. Heat Mass Transfer
,
163
(
12
), p.
120420
.
28.
Peng
,
C.
,
Tian
,
S.
,
Li
,
G.
, and
Michael
,
C.
,
2019
, “
Simulation of Laser-Produced Single Cavitation Bubbles With Hybrid Thermal Lattice Boltzmann Method
,”
Int. J. Heat Mass Transfer
,
149
(
3
), p.
119136
.
29.
Zhang
,
Y.
,
Qiu
,
X.
,
Zhang
,
X.
,
Tang
,
N.
, and
Zhang
,
Y.
,
2020
, “
Collapsing Dynamics of a Laser-Induced Cavitation Bubble Near the Edge of a Rigid Wall
,”
Ultrason. Sonochem.
,
67
(
10
), p.
105157
.
30.
Wu
,
D.
,
Hua
,
X.
,
Huang
,
L.
,
Li
,
F.
, and
Cai
,
Y.
,
2018
, “
Elucidation of Keyhole Induced Bubble Formation Mechanism in Fiber Laser Welding of Low Carbon Steel
,”
Int. J. Heat Mass Transfer
,
127
(
12
), pp.
1077
1086
.
31.
Qiang
,
H.
,
Han
,
B.
,
Chen
,
J.
,
Yang
,
C.
,
Li
,
T.
,
Pan
,
Y.
,
Shen
,
Z.
,
Lu
,
J.
, and
Ni
,
X.
,
2017
, “
Dynamics Study of a Laser-Induced Bubble on a Finite Metallic Surface in Water
,”
AIP Adv.
,
7
(
7
), p.
075109
.
32.
Wang
,
X.
,
Ma
,
C.
,
Li
,
C.
,
Kang
,
M.
, and
Ehmann
,
K.
,
2018
, “
Influence of Pulse Energy on Machining Characteristics in Laser Induced Plasma Micro-Machining
,”
J. Mater. Process. Technol.
,
262
(
12
), pp.
85
94
.
You do not currently have access to this content.