Abstract

In the present work, a novel cutting fluid has been extracted from mango (Mangifera indica L.) seeds using the soxhlet technique. Cutting fluid from agricultural waste can reduce the shortage of edible oils and eliminate the need to dispose them. Therefore, nonedible oils are economically comparable with edible oils. In order to validate the effectiveness of extracted cutting fluid, thermophysical characterization and tribology tests were performed. The obtained results were compared with edible and nonedible oils, such as sunflower oil (SFO) and mahua seed oil (MaSO), respectively. Friction tests were conducted using a tribometer with pin-on-disk (WC-Co/Ti-3Al-2.5V) at different tribological conditions. The worn surface and wear mechanism of disks were examined using a scanning electron microscope (SEM) associated with energy-dispersive spectroscopy (EDS) for comparing the elemental composition quantitatively. These findings showed that mango seed oil (MSO) exhibited the lowest coefficient of friction (COF) and wear volume followed by MaSO, SFO, and dry, respectively. SEM analysis showed that no plowing was observed; however, small pits and cracks were found on wear track under MSO. Further, the abovementioned oils were used as a cutting fluid in the machining of Ti-3Al-2.5V (grade 9 alloy). In this regard, MSO has shown a similar effect in turning operation with minimum quantity lubrication (MQL) system.

References

1.
Ashok Raj
,
J.
,
Pottirayil
,
A.
, and
Kailas
,
S. V.
,
2017
, “
Dry Sliding Wear Behavior of Ti-6Al-4V Pin Against SS316L Disk at Constant Contact Pressure
,”
ASME J. Tribol.
,
139
(
2
), p.
021603
.
2.
Guo
,
Y.
, and
Mann
,
J. B.
,
2020
, “
Control of Chip Formation and Improved Chip Ejection in Drilling With Modulation-Assisted Machining
,”
ASME J. Manuf. Sci. Eng.
,
142
(
7
), p.
071001
.
3.
Alam
,
M. O.
, and
Haseeb
,
A. S. M. A.
,
2002
, “
Response of Ti–6Al–4V and Ti–24Al–11Nb Alloys to Dry Sliding Wear Against Hardened Steel
,”
Tribol. Int.
,
35
(
6
), pp.
357
362
.
4.
Mao
,
Y. S.
,
Wang
,
L.
,
Chen
,
K. M.
,
Wang
,
S. Q.
, and
Cui
,
X. H.
,
2013
, “
Tribo-Layer and Its Role in Dry Sliding Wear of Ti–6Al–4V Alloy
,”
Wear
,
297
(
1–2
), pp.
1032
1039
.
5.
Molinari
,
A.
,
Straffelini
,
G.
,
Tesi
,
B.
, and
Bacci
,
T.
,
1997
, “
Dry Sliding Wear Mechanisms of the Ti6Al4V Alloy
,”
Wear
,
208
(
1–2
), pp.
105
112
.
6.
Dutt Sharma
,
M.
,
Sehgal
,
R.
, and
Pant
,
M.
,
2016
, “
Modeling and Optimization of Friction and Wear Characteristics of Ti3Al2.5V Alloy Under Dry Sliding Condition
,”
ASME J. Tribol.
,
138
(
3
), p.
061603
.
7.
Fellah
,
M.
, and
Aissani
,
L.
,
2017
, “
Effect of Milling Time on Sliding Friction and Wear Behavior of Hot Isostatically Pressed Titanium Alloys Ti-6Al-4X (X = V, Nb Fe) for Biomedical Applications
,”
ASME J. Tribol.
,
(c)
.
8.
Gupta
,
M. K.
,
Song
,
Q.
,
Liu
,
Z.
,
Sarikaya
,
M.
,
Jamil
,
M.
,
Mia
,
M.
,
Khanna
,
N.
, and
Krolczyk
,
G. M.
,
2021
, “
Experimental Characterisation of the Performance of Hybrid Cryo-Lubrication Assisted Turning of Ti–6Al–4V Alloy
,”
Tribol. Int.
,
153
, p.
106582
.
9.
Patel
,
K.
,
Liu
,
G.
,
Shah
,
S. R.
, and
Özel
,
T.
,
2020
, “
Effect of Micro-Textured Tool Parameters on Forces, Stresses, Wear Rate, and Variable Friction in Titanium Alloy Machining
,”
ASME J. Manuf. Sci. Eng.
,
142
(
2
), p.
021007
.
10.
Jawahir
,
I. S.
,
Schoop
,
J.
,
Kaynak
,
Y.
,
Balaji
,
A. K.
,
Ghosh
,
R.
, and
Lu
,
T.
,
2020
, “
Progress Toward Modeling and Optimization of Sustainable Machining Processes
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p.
110811
.
11.
Saikiran
,
M.
,
Ravali
,
G.
, and
Kumar
,
P.
,
2019
, “
Comparative Study of Vegetable Based and Conventional Cutting Fluids in Machining of Copper Alloys
,”
Mater. Today Proc.
,
19
(
Part 2
), pp.
611
614
.
12.
Haider
,
J.
, and
Hashmi
,
M. S. J.
,
2014
,
Health and Environmental Impacts in Metal Machining Processes
,
Elsevier
,
New York
.
13.
Bork
,
C. A. S.
,
de Souza Gonçalves
,
J. F.
,
de Oliveira Gomes
,
J.
, and
Gheller
,
J.
,
2014
, “
Performance of the Jatropha Vegetable-Base Soluble Cutting Oil as a Renewable Source in the Aluminum Alloy 7050-T7451 Milling
,”
CIRP J. Manuf. Sci. Technol.
,
7
(
3
), pp.
210
221
.
14.
Schneider
,
M. P.
,
2006
, “
Plant-Oil-Based Lubricants and Hydraulic Fluids
,”
J. Sci. Food Agric.
,
86
(
12
), pp.
1769
1780
.
15.
Sutherland
,
J. W.
,
Skerlos
,
S. J.
,
Haapala
,
K. R.
,
Cooper
,
D.
,
Zhao
,
F.
, and
Huang
,
A.
,
2020
, “
Industrial Sustainability: Reviewing the Past and Envisioning the Future
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p.
110806
.
16.
Perea-Moreno
,
A. J.
,
Juaidi
,
A.
, and
Manzano-Agugliaro
,
F.
,
2016
, “
Solar Greenhouse Dryer System for Wood Chips Improvement as Biofuel
,”
J. Clean. Prod.
,
135
, pp.
1233
1241
.
17.
Zhang
,
Y.
,
Li
,
C.
,
Jia
,
D.
,
Li
,
B.
,
Wang
,
Y.
,
Yang
,
M.
,
Hou
,
Y.
, and
Zhang
,
X.
,
2016
, “
Experimental Study on the Effect of Nanoparticle Concentration on the Lubricating Property of Nanofluids for MQL Grinding of Ni-Based Alloy
,”
J. Mater. Process. Technol.
,
232
, pp.
100
115
.
18.
Fernando
,
W. L. R.
,
Sarmilan
,
N.
,
Wickramasinghe
,
K. C.
,
Herath
,
H. M. C. M.
, and
Perera
,
G. I. P.
,
2019
, “
Experimental Investigation of Minimum Quantity Lubrication (MQL) of Coconut Oil Based Metal Working Fluid
,”
Mater. Today Proc.
,
23
(
Part 1
), pp.
23
26
.
19.
Singh
,
A. K.
, and
Sharma
,
V.
,
2021
, “
Thermo-Physical and Tribological Characteristics of Ionic Liquid-Based Rice Bran Oil as Green Cutting Fluid
,”
Proc. Inst. Mech. Eng., Part J
, p.
13506501211046154
.
20.
Abdul Sani
,
A. S.
,
Rahim
,
E. A.
,
Sharif
,
S.
, and
Sasahara
,
H.
,
2019
, “
Machining Performance of Vegetable Oil With Phosphonium- and Ammonium-Based Ionic Liquids via MQL Technique
,”
J. Clean. Prod.
,
209
, pp.
947
964
.
21.
Singh
,
R.
,
Sah
,
N. K.
, and
Sharma
,
V.
,
2021
, “
Development and Characterization of Unitary and Hybrid Al2O3 and ZrO Dispersed Jatropha Oil-Based Nanofluid for Cleaner Production
,”
J. Clean. Prod.
,
317
, p.
128365
.
22.
Paredes
,
X.
,
Comuñas
,
M. J. P.
,
Pensado
,
A. S.
,
Bazile
,
J. P.
,
Boned
,
C.
, and
Fernández
,
J.
,
2014
, “
High Pressure Viscosity Characterization of Four Vegetable and Mineral Hydraulic Oils
,”
Ind. Crops Prod.
,
54
, pp.
281
290
.
23.
Zareh-Desari
,
B.
, and
Davoodi
,
B.
,
2016
, “
Assessing the Lubrication Performance of Vegetable Oil-Based Nano-Lubricants for Environmentally Conscious Metal Forming Processes
,”
J. Clean. Prod.
,
135
, pp.
1198
1209
.
24.
Wickramasinghe
,
K. C.
,
Sasahara
,
H.
,
Rahim
,
E. A.
, and
Perera
,
G. I. P.
,
2021
, “
Recent Advances on High Performance Machining of Aerospace Materials and Composites Using Vegetable Oil-Based Metal Working Fluids
,”
J. Clean. Prod.
,
310
, p.
127459
.
25.
Singh
,
A. K.
,
Kumar
,
A.
,
Sharma
,
V.
, and
Kala
,
P.
,
2020
, “
Sustainable Techniques in Grinding: State of the Art Review
,”
J. Clean. Prod.
,
269
, p.
121876
.
26.
Rahman
,
S. S.
,
Ashraf
,
M. Z. I.
,
Amin
,
A. N.
,
Bashar
,
M. S.
,
Ashik
,
M. F. K.
, and
Kamruzzaman
,
M.
,
2019
, “
Tuning Nanofluids for Improved Lubrication Performance in Turning Biomedical Grade Titanium Alloy
,”
J. Clean. Prod.
,
206
, pp.
180
196
.
27.
Singh
,
H.
,
Sharma
,
V. S.
, and
Dogra
,
M.
,
2020
, “
Exploration of Graphene Assisted Vegetables Oil Based Minimum Quantity Lubrication for Surface Grinding of TI-6AL-4V-ELI
,”
Tribol. Int.
,
144
, p.
106113
.
28.
de Bartolomeis
,
A.
,
Newman
,
S. T.
,
Biermann
,
D.
, and
Shokrani
,
A.
,
2021
, “
State-of-the-Art Cooling and Lubrication for Machining Inconel 718
,”
ASME J. Manuf. Sci. Eng.
,
143
(
5
), p.
050801
.
29.
Samuel
,
J.
,
Jun
,
M. B. G.
,
Burak Ozdoganlar
,
O.
,
Honegger
,
A.
,
Vogler
,
M.
, and
Kapoor
,
S. G.
,
2020
, “
Micro/Meso-Scale Mechanical Machining 2020: A Two-Decade State-of-the-Field Review
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p.
110809
.
30.
Sujith
,
S. V.
,
Solanki
,
A. K.
, and
Mulik
,
R. S.
,
2019
, “
Experimental Evaluation on Rheological Behavior of Al2O3-Pure Coconut Oil Nanofluids
,”
J. Mol. Liq.
,
286
, p.
110905
.
31.
Okafor
,
A. C.
, and
Nwoguh
,
T. O.
,
2020
, “
A Study of Viscosity and Thermal Conductivity of Vegetable Oils as Base Cutting Fluids for Minimum Quantity Lubrication Machining of Difficult-to-Cut Metals
,”
Int. J. Adv. Manuf. Technol.
,
106
(
3–4
), pp.
1121
1131
.
32.
Obi
,
A.
,
Mshelia
,
Z.
,
Aji
,
I.
, and
Harfi
,
B.
,
2009
, “
Evaluation of Lubricity of Methanolic Extract of Mango (Mangifera indica) Seed in Machining Mild Steel
,”
J. Appl. Sci. Technol.
,
14
(
1–2
).
33.
Ahmadi Nadooshan
,
A.
,
Eshgarf
,
H.
, and
Afrand
,
M.
,
2018
, “
Measuring the Viscosity of Fe3O4-MWCNTs/EG Hybrid Nanofluid for Evaluation of Thermal Efficiency: Newtonian and Non-Newtonian Behavior
,”
J. Mol. Liq.
,
253
(
2017
), pp.
169
177
.
34.
Manojkumar
,
K.
, and
Ghosh
,
A.
,
2016
, “
Assessment of Cooling-Lubrication and Wettability Characteristics of Nano-Engineered Sunflower Oil as Cutting Fluid and Its Impact on SQCL Grinding Performance
,”
J. Mater. Process. Technol.
,
237
, pp.
55
64
.
35.
Rojas
,
E. E. G.
,
Coimbra
,
J. S. R.
, and
Telis-Romero
,
J.
,
2013
, “
Thermophysical Properties of Cotton, Canola, Sunflower and Soybean Oils as a Function of Temperature
,”
Int. J. Food Prop.
,
16
(
7
), pp.
1620
1629
.
36.
Behera
,
B. C.
,
Chetan
,
Setti
,
D.
,
Ghosh
,
S.
, and
Rao
,
P. V.
,
2017
, “
Spreadability Studies of Metal Working Fluids on Tool Surface and Its Impact on Minimum Amount Cooling and Lubrication Turning
,”
J. Mater. Process. Technol.
,
244
, pp.
1
16
.
37.
Shah
,
P.
,
Khanna
,
N.
,
Zadafiya
,
K.
,
Bhalodiya
,
M.
,
Maruda
,
R. W.
, and
Krolczyk
,
G. M.
,
2020
, “
In-House Development of Eco-Friendly Lubrication Techniques (EMQL, Nanoparticles + EMQL and EL) for Improving Machining Performance of 15–5 PHSS
,”
Tribol. Int.
,
151
, p.
106476
.
38.
Singh
,
S. P.
, and
Singh
,
D.
,
2010
, “
Biodiesel Production Through the Use of Different Sources and Characterization of Oils and Their Esters as the Substitute of Diesel: A Review
,”
Renewable Sustainable Energy Rev.
,
14
(
1
), pp.
200
216
.
39.
Vijay Kumar
,
M.
,
Veeresh Babu
,
A.
, and
Ravi Kumar
,
P.
,
2018
, “
Experimental Investigation on the Effects of Diesel and Mahua Biodiesel Blended Fuel in Direct Injection Diesel Engine Modified by Nozzle Orifice Diameters
,”
Renewable Energy
,
119
, pp.
388
399
.
40.
Reeves
,
C. J.
,
Menezes
,
P. L.
,
Jen
,
T. C.
, and
Lovell
,
M. R.
,
2015
, “
The Influence of Fatty Acids on Tribological and Thermal Properties of Natural Oils as Sustainable Biolubricants
,”
Tribol. Int.
,
90
, pp.
123
134
.
41.
Godiganur
,
S.
,
Suryanarayana Murthy
,
C. H.
, and
Reddy
,
R. P.
,
2009
, “
6BTA 5.9 G2-1 Cummins Engine Performance and Emission Tests Using Methyl Ester Mahua (Madhuca indica) Oil/Diesel Blends
,”
Renewable Energy
,
34
(
10
), pp.
2172
2177
.
42.
Yadav
,
S.
,
Suneja
,
P.
,
Hussain
,
Z.
,
Abraham
,
Z.
, and
Mishra
,
S. K.
,
2011
, “
Genetic Variability and Divergence Studies in Seed and Oil Parameters of Mahua (Madhuca longifolia Koenig) J.F. Macribide Accessions
,”
Biomass Bioenergy
,
35
(
5
), pp.
1773
1778
.
43.
Patil
,
N. V.
, and
Netravali
,
A. N.
,
2016
, “
Nonedible Starch Based ‘Green’ Thermoset Resin Obtained via Esterification Using a Green Catalyst
,”
ACS Sustainable Chem. Eng.
,
4
(
3
), pp.
1756
1764
.
44.
Henrique
,
M. A.
,
Silvério
,
H. A.
,
Flauzino Neto
,
W. P.
, and
Pasquini
,
D.
,
2013
, “
Valorization of an Agro-Industrial Waste, Mango Seed, by the Extraction and Characterization of Its Cellulose Nanocrystals
,”
J. Environ. Manage.
,
121
, pp.
202
209
.
45.
Mirkouei
,
A.
,
Haapala
,
K. R.
,
Sessions
,
J.
, and
Murthy
,
G. S.
,
2016
, “
Reducing Greenhouse Gas Emissions for Sustainable Bio-Oil Production Using a Mixed Supply Chain
,”
ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Charlotte, NC
,
Aug. 21–24
,
Vol. 50145, p. V004T05A031
.
46.
Vijayaraj
,
K.
, and
Sathiyagnanam
,
A. P.
,
2016
, “
Experimental Investigation of a Diesel Engine With Methyl Ester of Mango Seed Oil and Diesel Blends
,”
Alex. Eng. J.
,
55
(
1
), pp.
215
221
.
47.
Kittiphoom
,
S.
,
2012
, “
Utilization of Mango Seed
,”
Int. Food Res. J.
,
19
(
4
), pp.
1325
1335
.
48.
Ayala-Zavala
,
J. F.
,
Vega-Vega
,
V.
,
Rosas-Domínguez
,
C.
,
Palafox-Carlos
,
H.
,
Villa-Rodriguez
,
J. A.
,
Siddiqui
,
M. W.
,
Dávila-Aviña
,
J. E.
, and
González-Aguilar
,
G. A.
,
2011
, “
Agro-Industrial Potential of Exotic Fruit Byproducts as a Source of Food Additives
,”
Food Res. Int.
,
44
(
7
), pp.
1866
1874
.
49.
Sadiq
,
A. S.
,
Ejilah
,
I. R.
, and
Aroke
,
U. O.
,
2017
, “
Extraction and Assessment of Physicochemical Properties of Rosigold Mango (Mangifera indica) Seed Kernel Oil for Bioresin Production
,”
Arid Zone J. Eng. Technol. Environ.
,
13
(
5
), pp.
643
654
.
50.
Awolu
,
O. O.
, and
Manohar
,
B.
,
2019
, “
Quantitative and Qualitative Characterization of Mango Kernel Seed Oil Extracted Using Supercritical CO2 and Solvent Extraction Techniques
,”
Heliyon
,
5
(
12
), p.
e03068
.
51.
Singh
,
N.
, and
Choudhury
,
B.
,
2018
, “
Potential of Lentibacillus Sp. NS12IITR for Production of Lipids With Enriched Branched-Chain Fatty Acids for Improving Biodiesel Properties Along With Hydrocarbon Co-Production
,”
Extremophiles
,
22
(
6
), pp.
865
875
.
52.
ASTM D 4627, 2012 Test Method for Iron Chip Corrosion for Water-Dilutable Metal Working Fluids, ASTM international
.
53.
Gajrani
,
K. K.
, and
Sankar
,
M. R.
,
2020
, “Sustainable Cutting Fluids: Thermal, Rheological, Biodegradation, Anti-Corrosion, Storage Stability Studies and Its Machining Performance,”
Encyclopedia of Renewable and Sustainable Materials
,
Elsevier
,
New York
, pp.
839
852
.
54.
Singh
,
R.
,
Gupta
,
M. K.
,
Sarikaya
,
M.
,
Mia
,
M.
, and
Garcia-Collado
,
A.
,
2021
, “
Evaluation of Machinability-Based Sustainability Indicators in the Eco-Benign Turning of Ti3Al2.5V Alloy With Textured Tools
,”
Int. J. Adv. Manuf. Technol.
,
116
(
9–10
), pp.
3051
3061
.
55.
Kumar
,
N.
,
Singh
,
R.
, and
Sharma
,
V.
,
2021
, “
Experimental Investigations Into Thermophysical, Wettability and Tribological Characteristics of Ionic Liquid Based Metal Cutting Fluids
,”
J. Manuf. Process.
,
65
, pp.
190
205
.
56.
Singh
,
R.
, and
Sharma
,
V.
,
2022
, “
Experimental Investigations Into Sustainable Machining of Hastelloy C-276 Under Different Lubricating Strategies
,”
J. Manuf. Process.
,
75
, pp.
138
153
.
57.
Nadeem
,
M.
,
Imran
,
M.
,
Iqbal
,
Z.
,
Abbas
,
N.
, and
Mahmud
,
A.
,
2017
, “
Enhancement of the Oxidative Stability of Butter Oil by Blending With Mango (Mangifera indica L.) Kernel Oil in Ambient and Accelerated Oxidation
,”
J. Food Process. Preserv.
,
41
(
3
), p.
e12957
.
58.
Fox
,
N. J.
,
Tyrer
,
B.
, and
Stachowiak
,
G. W.
,
2004
, “
Boundary Lubrication Performance of Free Fatty Acids in Sunflower Oil
,”
Tribol. Lett.
,
16
(
4
), pp.
275
281
.
59.
Singh
,
A.
, and
Singh
,
I. S.
,
1991
, “
Chemical Evaluation of Mahua (Madhuca indica) Seed
,”
Food Chem.
,
40
(
2
), pp.
221
228
.
60.
González-Cuello
,
R. E.
,
Ramos-Ramírez
,
E. G.
,
Cruz-Orea
,
A.
, and
Salazar-Montoya
,
J. A.
,
2012
, “
Rheological Characterization and Activation Energy Values of Binary Mixtures of Gellan
,”
Eur. Food Res. Technol.
,
234
(
2
), pp.
305
313
.
61.
Sharma
,
S.
, and
Meena
,
A.
,
2021
, “
Microstructure Induced Shear Instability Criterion During High-Speed Machining of Ti-6Al-4V
,”
ASME J. Manuf. Sci. Eng.
,
143
(
6
), p.
061001
.
You do not currently have access to this content.