Abstract

The frequency response function (FRF) provides an input–output model that describes the system dynamics. Learning the FRF of a mechanical system can facilitate system identification, adaptive control, and condition-based health monitoring. Traditionally, FRFs can be measured by off-line experimental testing, such as impulse response measurements via impact hammer testing. In this paper, we investigate learning FRFs from operational data with a nonlinear regression approach. A regression model with a learned nonlinear basis is proposed for FRF learning for run-time systems under dynamic steady state. Compared with a classic FRF, the data-driven model accounts for both transient and steady-state responses. With a nonlinear function basis, the FRF model naturally handles nonlinear frequency response analysis. The proposed method is tested and validated for dynamic cutting force estimation of machining spindles under various operating conditions. As shown in the results, instead of being a constant linear ratio, the learned FRF can represent different mapping relationships under different spindle speeds and force levels, which accounts for the nonlinear behavior of the systems. It is shown that the proposed method can predict dynamic cutting forces with high accuracy using measured vibration signals. We also demonstrate that the learned data-driven FRF can be easily applied with the few-shot learning scheme to machine tool spindles with different frequency responses when limited training samples are available.

References

1.
Schmid
,
P.
,
2010
, “
Dynamic Mode Decomposition of Numerical and Experimental Data
,”
J. Fluid Mech.
,
656
(
8
), pp.
5
28
.
2.
Williams
,
M. O.
,
Kevrekidis
,
I. G.
, and
Rowley
,
C. W.
,
2015
, “
A Data-Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition
,”
J. Nonlinear Sci.
,
25
(
6
), pp.
1307
1346
.
3.
Mezic
,
I.
,
2013
, “
Analysis of Fluid Flows Via Spectral Properties of the Koopman Operator
,”
Annu. Rev. Fluid Mech.
,
45
(
1
), pp.
357
378
.
4.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2019
, “
Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
,
378
(
2
), pp.
686
707
.
5.
Shi
,
J.
,
Cao
,
H.
,
Maroju
,
N. K.
, and
Jin
,
X.
,
2019
, “
Dynamic Modeling of Aerostatic Spindle With Shaft Tilt Deformation
,”
ASME J. Manuf. Sci. Eng.
,
142
(
2
), p.
021006
.
6.
Tlusky
,
J.
,
Livingston
,
R.
, and
Teng
,
Y. B.
,
1986
, “
Nonlinearities in Spindle Bearings and Their Effects
,”
CIRP Ann.
,
35
(
1
), pp.
269
273
.
7.
Koyuncu
,
A.
,
Cigeroglu
,
E.
, and
Özgüven
,
H. N.
,
2017
, “
Localization and Identification of Structural Nonlinearities Using Cascaded Optimization and Neural Networks
,”
Mech. Syst. Signal Process.
,
95
(
10
), pp.
219
238
.
8.
Teti
,
R.
,
Jemielniak
,
K.
,
O’Donnell
,
G.
, and
Dornfeld
,
D.
,
2010
, “
Advanced Monitoring of Machining Operations
,”
CIRP Ann.
,
59
(
2
), pp.
717
739
.
9.
Vashisht
,
R. K.
, and
Peng
,
Q.
,
2020
, “
Online Chatter Detection for Milling Operations Using LSTM Neural Networks Assisted by Motor Current Signals of Ball Screw Drives
,”
ASME J. Manuf. Sci. Eng.
,
143
(
1
), p.
011008
.
10.
Varghese
,
A.
,
Kulkarni
,
V.
, and
Joshi
,
S. S.
,
2020
, “
Tool Life Stage Prediction in Micro-Milling From Force Signal Analysis Using Machine Learning Methods
,”
ASME J. Manuf. Sci. Eng.
,
143
(
5
), p.
054501
.
11.
Ambhore
,
N.
,
Kamble
,
D.
,
Chinchanikar
,
S.
, and
Wayal
,
V.
,
2015
, “
Tool Condition Monitoring System: A Review
,”
Mater. Today: Proc.
,
2
(
4–5
), pp.
3419
3428
.
12.
Abdullah
,
L.
,
Jamaludin
,
Z.
,
Tsung Heng
,
C.
, and
Rafan
,
N.
,
2012
, “
Systematic Method for Cutting Forces Characterization for XY Milling Table Ball Screw Drive System
,”
Int. J. Mech. Mechatron. Eng.
,
12
(
6
), pp.
28
33
.
13.
Brecher
,
C.
,
Eckel
,
H.
,
Motschke
,
T.
,
Fey
,
M.
, and
Epple
,
A.
,
2019
, “
Estimation of the Virtual Workpiece Quality by the Use of a Spindle-Integrated Process Force Measurement
,”
CIRP Ann.
,
68
(
1
), pp.
381
384
.
14.
Altintas
,
Y.
, and
Aslan
,
D.
,
2017
, “
Integration of Virtual and On-Line Machining Process Control and Monitoring
,”
CIRP Ann.
,
66
(
1
), pp.
349
352
.
15.
Aslan
,
D.
, and
Altintas
,
Y.
,
2018
, “
Prediction of Cutting Forces in Five-Axis Milling Using Feed Drive Current Measurements
,”
IEEE/ASME Trans. Mechatron.
,
23
(
2
), pp.
833
844
.
16.
Cao
,
H.
,
Zhang
,
X.
, and
Chen
,
X.
,
2017
, “
The Concept and Progress of Intelligent Spindles: A Review
,”
Int. J. Mach. Tools Manuf.
,
112
(
1
), pp.
21
52
.
17.
Wang
,
C.
,
Zhang
,
X.
,
Qiao
,
B.
,
Cao
,
H.
, and
Chen
,
X.
,
2019
, “
Dynamic Force Identification in Peripheral Milling Based on CGLS Using Filtered Acceleration Signals and Averaged Transfer Functions
,”
ASME J. Manuf. Sci. Eng.
,
141
(
6
), pp.
1
8
.
18.
Postel
,
M.
,
Aslan
,
D.
,
Wegener
,
K.
, and
Altintas
,
Y.
,
2019
, “
Monitoring of Vibrations and Cutting Forces With Spindle Mounted Vibration Sensors
,”
CIRP Ann.
,
68
(
1
), pp.
413
416
.
19.
Kushnir
,
E.
,
2004
, “
Determination of Machine Tool Frequency Response Function During Cutting
,”
Proceedings of the ASME 2004 International Mechanical Engineering Congress and Exposition. Pressure Vessels and Piping
,
Anaheim, CA
,
Nov. 13–19
, pp.
63
69
.
20.
Deng
,
Z.
,
Zhang
,
X.
, and
Zhao
,
Y.
,
2020
, “
Transfer Learning Based Method for Frequency Response Model Updating With Insufficient Data
,”
Sensors
,
20
(
19
), p.
5615
.
21.
Thenozhi
,
S.
, and
Tang
,
Y.
,
2018
, “
Learning-Based Frequency Response Function Estimation for Nonlinear Systems
,”
Int. J. Syst. Sci.
,
49
(
11
), pp.
2287
2297
.
22.
Vidaković-Koch
,
T.
,
Miličić
,
L.
,
Živković
,
L. A.
,
Chan
,
H. S.
,
Krewer
,
U.
, and
Petkovska
,
M.
,
2021
, “
Nonlinear Frequency Response Analysis: A Recent Review and Perspectives
,”
Curr. Opin. Electrochem.
,
30
(
12
), p.
100851
.
23.
Lang
,
Z. Q.
, and
Billings
,
S. A.
,
2005
, “
Energy Transfer Properties of Non-Linear Systems in the Frequency Domain
,”
Int. J. Control
,
78
(
5
), pp.
345
362
.
24.
Bayma
,
R. S.
,
Zhu
,
Y.
, and
Lang
,
Z. Q.
,
2018
, “
The Analysis of Nonlinear Systems in the Frequency Domain Using Nonlinear Output Frequency Response Functions
,”
Automatica
,
94
(
3
), pp.
452
457
.
25.
Qu
,
Y.
, and
Vogl
,
G. W.
,
2021
, “
Estimating Dynamic Cutting Forces of Machine Tools From Measured Vibrations Using Sparse Regression With Nonlinear Function Basis
,”
Annu. Conf. PHM Soc.
,
13
(
1
), pp.
1
10
.
26.
Loo
,
Y.
,
Lim
,
S. K.
,
Roig
,
G.
, and
Cheung
,
N. M.
,
2019
, “
Few-Shot Regression Via Learned Basis Functions
,”
International Conference on Learning Representations
,
New Orleans, LA
,
May 6–9
.
27.
Loo
,
Y.
,
Guo
,
Y.
, and
Cheung
,
N.
,
2019
, “
Few-Shot Regression Via Learning Sparsifying Basis Functions
,”
Open Review Manuscript for International Conference on Learning Representations
,
Online
.
28.
Irino
,
N.
,
Imabeppua
,
Y.
,
Higuchia
,
Y.
,
Shinbaa
,
Y.
,
Kawaia
,
K.
,
Suzukib
,
N.
,
Kanekoc
,
J.
,
Kakinuma
,
Y.
, and
Mori
,
M.
,
2021
, “
Vibration Analysis and Cutting Simulation of Structural Nonlinearity for Machine Tool
,”
CIRP Ann. Manuf. Technol.
,
70
(
1
), pp.
317
320
.
You do not currently have access to this content.