Abstract

Introduced is a new physics-based three-dimensional (3D) mathematical model capable of efficiently predicting time histories of the nonlinear structural dynamics in cold rolling mills used to manufacture metal strips and sheets. The described model allows for the prediction of transient strip thickness profiles, contact force distributions, and roll-stack deformations due to dynamic disturbances. Formulation of the new 3D model is achieved through a combination of the highly efficient simplified-mixed finite element method with a Newmark-beta direct time integration approach to solve the system of differential equations that governs the motion of the roll-stack. In contrast to prior approaches to predict structural dynamics in cold rolling, the presented method abandons several simplifying assumptions and restrictions, including 1D or 2D linear lumped parameter analyses, vertical symmetry, continuous and constant contact between the rolls and strip, as well as the inability to model cluster-type mill configurations and accommodate typical profile/flatness control mechanisms used in industry. Following spatial and temporal convergence studies of the undamped step response, and validation of the damped step response, the new model is demonstrated for a 4-high mill equipped with both work-roll bending and work-roll crown, a 6-high mill with continuously variable crown (CVC) intermediate rolls, and finally a complex 20-high cluster mill. Solution times on a single computing processor for the damped 4-high and 20-high case studies are just 0.37 s and 3.38 s per time-step, respectively.

References

1.
Zhang
,
F.
, and
Malik
,
A.
,
2021
, “
An Efficient Multi-scale Modeling Method That Reveals Coupled Effects Between Surface Roughness and Roll-Stack Deformation in Cold Sheet Rolling
,”
ASME J. Manuf. Sci. Eng.
,
143
(
10
), p.
101005
.
2.
Xie
,
L.
,
He
,
A.
, and
Liu
,
C.
,
2018
, “
A Rapid Calculation Method for Predicting Roll Deformation of Six-High Rolling Mill
,”
J. Iron Steel Res. Int.
,
25
(
9
), pp.
901
909
.
3.
Park
,
H.
, and
Hwang
,
S.
,
2017
, “
3-D Coupled Analysis of Deformation of the Strip and Rolls in Flat Rolling by FEM
,”
Steel Res. Int.
,
88
(
12
), p.
1700227
.
4.
Malik
,
A. S.
, and
Hinton
,
J. L.
,
2012
, “
Displacement of Multiple, Coupled Timoshenko Beams in Discontinuous Nonlinear Elastic Contact, With Application to Rolling Mills
,”
ASME J. Manuf. Sci. Eng.
,
134
(
5
), p.
051009
.
5.
Yarita
,
I.
,
Furukawa
,
K.
,
Seino
,
Y.
,
Takimoto
,
T.
,
Nakazato
,
Y.
, and
Nakagawa
,
K.
,
1978
, “
An Analysis of Chattering in Cold Rolling for Ultrathin Gauge Steel Strip
,”
Trans. Iron Steel Inst. Jpn.
,
18
(
1
), pp.
1
10
.
6.
Tamiya
,
T.
,
Furui
,
K.
, and
Lida
,
H.
,
1980
, “
Analysis of Chattering Phenomenon in Cold Rolling
,”
Proceedings of Science and Technology of Flat Rolled Products, International Conference on Steel Rolling
,
Tokyo, Japan
,
Sept. 29–Oct. 4
, pp.
1191
1202
.
7.
Tlusty
,
J.
,
Chandra
,
G.
,
Critchley
,
S.
, and
Paton
,
D.
,
1982
, “
Chatter in Cold Rolling
,”
CIRP Ann.
,
31
(
1
), pp.
195
199
.
8.
Chefneux
,
L.
,
Fischbach
,
J.-P.
, and
Gouzou
,
J.
,
1984
, “
Study and Industrial Control of Chatter in Cold Rolling
,”
Iron Steel Eng.
,
61
(
11
), pp.
17
26
.
9.
Kapil
,
S.
,
Eberhard
,
P.
, and
Dwivedy
,
S. K.
,
2014
, “
Nonlinear Dynamic Analysis of a Parametrically Excited Cold Rolling Mill
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041012
.
10.
Lin
,
Y.-J.
,
Suh
,
C. S.
,
Langari
,
R.
, and
Noah
,
S. T.
,
2003
, “
On the Characteristics and Mechanism of Rolling Instability and Chatter
,”
ASME J. Manuf. Sci. Eng.
,
125
(
4
), pp.
778
786
.
11.
Kimura
,
Y.
,
Sodani
,
Y.
,
Nishiura
,
N.
,
Ikeuchi
,
N.
, and
Mihara
,
Y.
,
2003
, “
Analysis of Chatter in Tandem Cold Rolling Mills
,”
ISIJ Int.
,
43
(
1
), pp.
77
84
.
12.
Yun
,
I.-S.
,
Wilson
,
W. R. D.
, and
Ehmann
,
K. F.
,
1998
, “
Chatter in the Strip Rolling Process, Part 1: Dynamic Model of Rolling
,”
ASME J. Manuf. Sci. Eng.
,
120
(
2
), pp.
330
336
.
13.
Yun
,
I.-S.
,
Ehmann
,
K. F.
, and
Wilson
,
W. R. D.
,
1998
, “
Chatter in the Strip Rolling Process, Part 2: Dynamic Rolling Experiments
,”
ASME J. Manuf. Sci. Eng.
,
120
(
2
), pp.
337
342
.
14.
Yun
,
I.-S.
,
Ehmann
,
K. F.
, and
Wilson
,
W. R. D.
,
1998
, “
Chatter in the Strip Rolling Process, Part 3: Chatter Model
,”
ASME J. Manuf. Sci. Eng.
,
120
(
2
), pp.
343
348
.
15.
Hu
,
P.-H.
, and
Ehmann
,
K. F.
,
2000
, “
A Dynamic Model of the Rolling Process. Part I: Homogeneous Model
,”
Int. J. Mach. Tools Manuf.
,
40
(
1
), pp.
1
19
.
16.
Hu
,
P.-H.
, and
Ehmann
,
K. F.
,
2000
, “
A Dynamic Model of the Rolling Process. Part II: Inhomogeneous Model
,”
Int. J. Mach. Tools Manuf.
,
40
(
1
), pp.
21
31
.
17.
Kim
,
Y.
,
Kim
,
C.-W.
,
Lee
,
S.-J.
, and
Park
,
H.
,
2012
, “
Experimental and Numerical Investigation of the Vibration Characteristics in a Cold Rolling Mill Using Multibody Dynamics
,”
ISIJ Int.
,
52
(
11
), pp.
2042
2047
.
18.
Lu
,
X.
,
Sun
,
J.
,
Li
,
G.
,
Wang
,
Q.
, and
Zhang
,
D.
,
2019
, “
Dynamic Analysis of Vibration Stability in Tandem Cold Rolling Mill
,”
J. Mater. Process. Technol.
,
272
, pp.
47
57
.
19.
Mehrabi
,
R.
,
Salimi
,
M.
, and
Ziaei-Rad
,
S.
,
2015
, “
Finite Element Analysis on Chattering in Cold Rolling and Comparison With Experimental Results
,”
ASME J. Manuf. Sci. Eng.
,
137
(
6
), p.
061013
.
20.
Niroomand
,
M. R.
,
Forouzan
,
M. R.
, and
Salimi
,
M.
,
2015
, “
Theoretical and Experimental Analysis of Chatter in Tandem Cold Rolling Mills Based on Wave Propagation Theory
,”
ISIJ Int.
,
55
(
3
), pp.
637
646
.
21.
Brusa
,
E.
,
Lemma
,
L.
, and
Benasciutti
,
D.
,
2010
, “
Vibration Analysis of a Sendzimir Cold Rolling Mill and Bearing Fault Detection
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
224
(
8
), pp.
1645
1654
.
22.
Sun
,
J.
,
Peng
,
Y.
, and
Liu
,
H.
,
2014
, “
Dynamic Characteristics of Cold Rolling Mill and Strip Based on Flatness and Thickness Control in Rolling Process
,”
J. Cent. South Univ.
,
21
(
2
), pp.
567
576
.
23.
Kapil
,
S.
,
Eberhard
,
P.
, and
Dwivedy
,
S. K.
,
2016
, “
Dynamic Analysis of Cold-Rolling Process Using the Finite-Element Method
,”
ASME J. Manuf. Sci. Eng.
,
138
(
4
), p.
041002
.
24.
Brusa
,
E.
, and
Lemma
,
L.
,
2009
, “
Numerical and Experimental Analysis of the Dynamic Effects in Compact Cluster Mills for Cold Rolling
,”
J. Mater. Process. Technol.
,
209
(
5
), pp.
2436
2445
.
25.
Yun
,
I. S.
,
Wilson
,
W. R. D.
, and
Ehmann
,
K. F.
,
1998
, “
Review of Chatter Studies in Cold Rolling
,”
Int. J. Mach. Tools Manuf.
,
38
(
12
), pp.
1499
1530
.
26.
Guo
,
R.-M.
,
Urso
,
A. C.
, and
Schunk
,
J. H.
,
1993
, “
Analysis of Chatter Vibration Phenomena of Rolling Mills Using Finite Element Methods
,”
Iron Steel Eng.
,
70
(
1
), pp.
29
39
.
27.
Malik
,
A. S.
, and
Grandhi
,
R. V.
,
2008
, “
A Computational Method to Predict Strip Profile in Rolling Mills
,”
J. Mater. Process. Technol.
,
206
(
1–3
), pp.
263
274
.
28.
Matsubara
,
S.
,
Hara
,
K.
, and
Takezoe
,
A.
,
1989
, “
Optimization of Work Roll Taper for Extremely-Thin Strip Rolling
,”
ISIJ Int.
,
29
(
1
), pp.
58
63
.
29.
Roberts
,
W. L.
, “
A Simplified Cold Rolling Model
,”
Iron Steel Eng.
,
42
(
10
), pp.
75
87
.
30.
Fleck
,
N. A.
, and
Johnson
,
K. L.
,
1987
, “
Towards a New Theory of Cold Rolling Thin Foil
,”
Int. J. Mech. Sci.
,
29
(
7
), pp.
507
524
.
31.
Bland
,
D. R.
, and
Ford
,
H.
,
1948
, “
The Calculation of Roll Force and Torque in Cold Strip Rolling With Tensions
,”
Proc. Inst. Mech. Eng.
,
159
(
1
), pp.
144
163
.
32.
Zhang
,
F.
, and
Malik
,
A.
,
2018
, “
A Roll-Stack Contact Mechanics Model to Predict Strip Profile in Rolling Mills With Asymmetric, Continuously Variable Crown Rolls
,”
ASME J. Manuf. Sci. Eng.
,
140
(
1
), p.
011008
.
33.
Zhang
,
F.
,
Malik
,
A. S.
, and
Yu
,
H.
, “
High-Fidelity Roll Profile Contact Modeling by Simplified Mixed Finite Element Method
,”
Proceedings of the ASME 2018 13th International Manufacturing Science and Engineering Conference, Vol. 4: Processes
,
College Station, TX
,
June 18–22
, p.
V004T03A034
.
34.
Guo
,
R.-M.
,
1997
, “
Prediction of Strip Profile in Rolling Process Using Influence Coefficients and Boussinesq’s Equations
,”
ASME J. Manuf. Sci. Eng.
,
119
(
5
), pp.
220
226
.
35.
Guo
,
R.-M.
, and
Malik
,
A. S.
,
2005
, “
Development of a New Crown/Shape Control Model for Cluster Mills
,”
Iron Steel Technol.
,
2
(
8
), pp.
31
40
.
36.
Lee
,
S.-H.
,
Song
,
G.-H.
,
Lee
,
S.-J.
, and
Kim
,
B.-M.
,
2011
, “
Study on the Improved Accuracy of Strip Profile Using Numerical Formula Model in Continuous Cold Rolling With 6-High Mill
,”
J. Mat. Sci. Tech.
,
25
(
8
), pp.
2101
2109
.
37.
Lindfield
,
G.
, and
Penny
,
J.
,
2019
,
Numerical Methods
, 4th ed.,
Academic Press
,
London, UK
, pp.
239
299
.
38.
Cook
,
R. D.
,
2007
,
Concepts and Applications of Finite Element Analysis
,
John Wiley & Sons
,
Hoboken, NJ
.
39.
Lu
,
Y.
, and
Morris
,
G.
,
2017
, “
Assessment of Three Viscous Damping Methods for Nonlinear History Analysis: Rayleigh With Initial Stiffness, Rayleigh With Tangent Stiffness, and Modal
,”
Proceedings of Sixteenth World Conference on Earthquake Engineering
,
Santiago, Chile
,
Jan. 8–13
.
40.
Paton
,
S.
, and
Critchley
,
D. L.
,
1985
, “
Tandem Mill Vibration: Its Cause and Control
,”
Iron Steelmak.
,
12
(
3
), pp.
37
43
.
You do not currently have access to this content.