Abstract

Common in discrete manufacturing, timed event systems often have strict synchronization requirements for healthy operation. Discrete event system methods have been used as mathematical tools to detect known faults, but do not scale well for problems with extensive variability in the normal class. A hybridized discrete event and data-driven method is suggested to supplement fault diagnosis in the case where failure patterns are not known in advance. A unique fault diagnosis framework consisting of signal data from programmable logic controllers, a Timed Petri Net of the normal process behavior, and machine learning algorithms is presented to improve fault diagnosis of timed event systems. Various supervised and unsupervised machine learning algorithms are explored as the methodology is implemented in a case study in semiconductor manufacturing. State-of-the-art classifiers such as artificial neural networks, support vector machines, and random forests are implemented and compared for handling multi-fault diagnosis using programmable logic controller signal data. For unsupervised learning, classifiers based on principal component analysis utilizing major and minor principal components are compared for anomaly detection. The rule-based random forest and extreme random forest classifiers achieve excellent performance with a precision and recall score of 0.96 for multi-fault classification. Additionally, the unsupervised learning approach yields anomaly detection rates of 98% with false alarms under 3% with a training set 99% smaller than the supervised learning classifiers. These results obtained on a real use case are promising to enable prognostic tools in industrial automation systems in the future.

References

1.
Zhou
,
M. C.
, and
Jeng
,
M. der
,
1998
, “
Modeling, Analysis, Simulation, Scheduling, and Control of Semiconductor Manufacturing Systems: A Petri Net Approach
,”
IEEE Trans. Semicond. Manuf.
,
11
(
3
), pp.
333
357
.
2.
Cao
,
X.
,
Day
,
S.
,
Shah
,
S.
, and
McGee
,
S.
,
2006
, “
Discrete Event Simulation in Pharmaceutical Research – A Package Line Model
,”
Proceedings of the 2006 OR Society Simulation Workshop
,
Birmingham, UK
, pp.
1123
1130
.
3.
Zhang
,
Y.
,
Wang
,
W.
,
Du
,
W.
,
Qian
,
C.
, and
Yang
,
H.
,
2018
, “
Coloured Petri Net-Based Active Sensing System of Real-Time and Multi-Source Manufacturing Information for Smart Factory
,”
Int. J. Adv. Manuf. Technol.
,
94
(
9–12
), pp.
3427
3439
.
4.
Hu
,
W.
,
Starr
,
A. G.
, and
Leung
,
A. Y. T.
,
2003
, “
Operational Fault Diagnosis of Manufacturing Systems
,”
J. Mater. Process. Technol.
,
133
(
1–2
), pp.
108
117
.
5.
Lee
,
J.
,
Ni
,
J.
,
Djurdjanovic
,
D.
,
Qiu
,
H.
, and
Liao
,
H.
,
2006
, “
Intelligent Prognostics Tools and E-Maintenance
,”
Comput. Ind.
,
57
(
6
), pp.
476
489
.
6.
Lee
,
J.
,
Wu
,
F.
,
Zhao
,
W.
,
Ghaffari
,
M.
,
Liao
,
L.
, and
Siegel
,
D.
,
2014
, “
Prognostics and Health Management Design for Rotary Machinery Systems—Reviews, Methodology and Applications
,”
Mech. Syst. Signal Process.
,
42
(
1–2
), pp.
314
334
.
7.
Liao
,
L.
, and
Köttig
,
F.
,
2014
, “
Review of Hybrid Prognostics Approaches for Remaining Useful Life Prediction of Engineered Systems, and an Application to Battery Life Prediction
,”
IEEE Trans. Reliab.
,
63
(
1
), pp.
191
207
.
8.
Pimentel
,
M. A. F.
,
Clifton
,
D. A.
,
Clifton
,
L.
, and
Tarassenko
,
L.
,
2014
, “
A Review of Novelty Detection
,”
Signal Process.
,
99
, pp.
215
249
.
9.
Shyu
,
M. L.
,
Chen
,
S. C.
,
Sarinnapakorn
,
K.
, and
Chang
,
L.
,
2003
, “
A Novel Anomaly Detection Scheme Based on Principal Component Classifier
,”
Proceedings of the 3rd IEEE International Conference on Data Mining
,
Melbourne, FL
,
Nov. 22
, pp.
353
365
.
10.
Zaytoon
,
J.
, and
Lafortune
,
S.
,
2013
, “
Overview of Fault Diagnosis Methods for Discrete Event Systems
,”
Annu. Rev. Control
,
37
(
2
), pp.
308
320
.
11.
Sampath
,
M.
,
Sengupta
,
R.
,
Lafortune
,
S.
,
Sinnamohideen
,
K.
, and
Teneketzis
,
D.
,
1995
, “
Diagnosability of Discrete-Event Systems
,”
IEEE Trans. Autom. Control
,
40
(
9
), pp.
1555
1575
.
12.
Liu
,
J.
,
Djurdjanovic
,
D.
, and
Ni
,
J.
,
2009
, “
Identification and Anomaly Detection for PLC Controlled Automatic Tool Changer Using Timed Petri Net
,”
Proceedings of the ASME International Manufacturing Science and Engineering Conference 2007
,
Atlanta, GA
,
Oct. 15–18
, pp.
547
554
.
13.
Wu
,
Z.
, and
Hsieh
,
S. J.
,
2012
, “
A Realtime Fuzzy Petri Net Diagnoser for Detecting Progressive Faults in PLC Based Discrete Manufacturing System
,”
Int. J. Adv. Manuf. Technol.
,
61
(
1–4
), pp.
405
421
.
14.
Mansour
,
M. M.
,
Wahab
,
M. A. A.
, and
Soliman
,
W. M.
,
2013
, “
Petri Nets for Fault Diagnosis of Large Power Generation Station
,”
Ain Shams Eng. J.
,
4
(
4
), pp.
831
842
.
15.
Meseguer
,
J.
,
Puig
,
V.
, and
Escobet
,
T.
,
2010
, “
Fault Diagnosis Using a Timed Discrete-Event Approach Based on Interval Observers: Application to Sewer Networks
,”
IEEE Trans. Syst. Man Cybern. Part A: Syst. Humans
,
40
(
5
), pp.
900
916
.
16.
Cabasino
,
M. P.
,
Giua
,
A.
, and
Seatzu
,
C.
,
2010
, “
Fault Detection for Discrete Event Systems Using Petri Nets With Unobservable Transitions
,”
Automatica
,
46
(
9
), pp.
1531
1539
.
17.
Subasi
,
A.
, and
Ismail Gursoy
,
M.
,
2010
, “
EEG Signal Classification Using PCA, ICA, LDA and Support Vector Machines
,”
Expert Syst. Appl.
,
37
(
12
), pp.
8659
8666
.
18.
Wang
,
J.
,
Ma
,
Y.
,
Zhang
,
L.
,
Gao
,
R. X.
, and
Wu
,
D.
,
2018
, “
Deep Learning for Smart Manufacturing: Methods and Applications
,”
J. Manuf. Syst.
,
48
(
Part C
), pp.
144
156
.
19.
Genuer
,
R.
,
Poggi
,
J. M.
,
Tuleau-Malot
,
C.
, and
Villa-Vialaneix
,
N.
,
2017
, “
Random Forests for Big Data
,”
Big Data Res.
,
9
, pp.
28
46
.
20.
Maier
,
O.
,
Wilms
,
M.
,
von der Gablentz
,
J.
,
Krämer
,
U. M.
,
Münte
,
T. F.
, and
Handels
,
H.
,
2015
, “
Extra Tree Forests for Sub-Acute Ischemic Stroke Lesion Segmentation in MR Sequences
,”
J. Neurosci. Methods
,
240
, pp.
89
100
.
21.
Susto
,
G. A.
,
Schirru
,
A.
,
Pampuri
,
S.
,
McLoone
,
S.
, and
Beghi
,
A.
,
2015
, “
Machine Learning for Predictive Maintenance: A Multiple Classifier Approach
,”
IEEE Trans. Ind. Inf.
,
11
(
3
), pp.
812
820
.
22.
Bezanson
,
J.
,
Edelman
,
A.
,
Karpinski
,
S.
, and
Shah
,
V. B.
,
2014
, “
Julia: A Fresh Approach to Numerical Computing
,”
SIAM Rev.
,
59
(
1
), pp.
65
98
.
23.
Pedregosa
,
F.
,
Varoquaux
,
G.
,
Gramfort
,
A.
,
Michel
,
V.
,
Thirion
,
B.
,
Grisel
,
O.
,
Blondel
,
M.
,
Prettenhofer
,
P.
,
Weiss
,
R.
,
Dubourg
,
V.
,
Vanderplas
,
J.
,
Passos
,
A.
,
Cournapeau
,
D.
,
Brucher
,
M.
,
Perrot
,
M.
, and
Duchesnay
,
E.
,
2012
, “
Scikit-Learn: Machine Learning in Python
,”
J. Mach. Learn. Res.
,
12
, pp.
2825
2830
. https://arxiv.org/abs/1201.0490
24.
Khalilia
,
M.
,
Chakraborty
,
S.
, and
Popescu
,
M.
,
2011
, “
Predicting Disease Risks From Highly Imbalanced Data Using Random Forest
,”
BMC Med. Inf. Decis. Making
,
11
(
1
), pp.
1
13
.
25.
Cohen
,
J.
,
Jiang
,
B.
, and
Ni
,
J.
,
2021
, “
Fault Diagnosis of Timed Event Systems: An Exploration of Machine Learning Methods
,”
ASME 2020 15th International Manufacturing Science and Engineering Conference
,
Virtual
,
Sept. 3
.
You do not currently have access to this content.