Abstract

The ultrasonic spot welding (USW) is widely used in the joining of multilayer Cu or Al tabs in the lithium-ion battery. Due to the high-frequency vibration of the sonotrode and various deformation in each interface, the friction behavior is complex which makes it difficult to simulate the welding process of multilayer specimens. In this paper, an efficient and accurate finite element model (FEM) was proposed via introducing the interface heat flux to equivalent the heat generation by the friction. The total heat flux was determined by the heat transfer analysis and the proportion of each interface was determined based on the analysis of the friction behavior. Then, the FEM was validated by comparing the simulated temperature and deformation with experimental results. Finally, the FEM was applied to simulate the USW process of four, five, and ten layers of copper and aluminum foils in order to characterize the gradient of the ultrasonic energy. It was found that the heat generation concentrated in middle interfaces was 65% of the total in the welding of four-layer copper foils. The heat generation was mainly related to the welding parameters and the proportion was related to the size of tips and the structure of specimens. The plastic strain varied in specimens because of the gradient of the input energy. It was most obvious in the welding of 10-layer aluminum foils that the maximum equivalent plastic strain (PEEQ) in the fifth interface was 92.9% smaller than the top interface.

References

1.
Lee
,
S. S.
,
Kim
,
T. H.
,
Hu
,
S. J.
,
Cai
,
W. W.
, and
Li
,
J.
,
2013
, “
Characterization of Ultrasonic Metal Weld Quality for Lithium-Ion Battery Tab Joining
,”
ASME J. Manuf. Sci. Eng.
,
135
(
2
), p.
021004
.
2.
Macwan
,
A.
,
Kumar
,
A.
, and
Chen
,
D. L.
,
2017
, “
Ultrasonic Spot Welded 6111-T4 Aluminum Alloy to Galvanized High-Strength Low-Alloy Steel: Microstructure and Mechanical Properties
,”
Mater. Des.
,
113
(
5
), pp.
284
296
.
3.
Li
,
C.
,
Ao
,
S.
,
Oliveira
,
J. P.
,
Zeng
,
Z.
,
Cui
,
H.
, and
Luo
,
Z.
,
2020
, “
Effects of Postweld Heat Treatment on the Phase Transformation and Mechanical Behavior of NiTi Ultrasonic Spot Welded Joints With Al Interlayer
,”
ASME J. Manuf. Sci. Eng.
,
142
(
10
), p.
101006
.
4.
Dhara
,
S.
, and
Das
,
A.
,
2020
, “
Impact of Ultrasonic Welding on Multi-Layered Al–Cu Joint for Electric Vehicle Battery Applications: A Layer-Wise Microstructural Analysis
,”
Mater. Sci. Eng. A
,
791
(
22
), p.
139795
.
5.
Samanta
,
A.
,
Xiao
,
S. P.
,
Shen
,
N. G.
,
Li
,
J. J.
, and
Ding
,
H. T.
,
2019
, “
Atomistic Simulation of Diffusion Bonding of Dissimilar Materials Undergoing Ultrasonic Welding
,”
Int. J. Adv. Manuf. Technol.
,
103
(
1–4
), pp.
879
890
.
6.
Mohammed
,
S. M. A. K.
,
Dash
,
S. S.
,
Jiang
,
X. Q.
,
Li
,
D. Y.
, and
Chen
,
D. L.
,
2019
, “
Ultrasonic Spot Welding of 5182 Aluminum Alloy: Evolution of Microstructure and Mechanical Properties
,”
Mater. Sci. Technol. A
,
756
(
22
), pp.
417
429
.
7.
Kumar
,
S.
,
Wu
,
C. S.
,
Padhy
,
G. K.
, and
Ding
,
W.
,
2017
, “
Application of Ultrasonic Vibrations in Welding and Metal Processing: A Status Review
,”
J. Manuf. Process.
,
26
(
APR.
), pp.
295
322
.
8.
Lee
,
T. H.
,
Fan
,
H. T.
,
Li
,
Y.
,
Shriver
,
D.
, and
Banu
,
M.
,
2021
, “
Enhanced Performance of Ultrasonic Welding of Short Carbon Fiber Polymer Composites Through Control of Morphological Parameters
,”
ASME J. Manuf. Sci. Eng.
,
142
(
2
), p.
021002
.
9.
Cong
,
L.
,
Liu
,
W.
,
Kong
,
S.
,
Li
,
H.
,
Deng
,
Y.
, and
Ma
,
H.
,
2021
, “
End-of-Use Management of Spent Lithium-Ion Batteries From Sustainability Perspective: A Review
,”
ASME J. Manuf. Sci. Eng.
,
143
(
10
), p.
100801
.
10.
Kang
,
B.
,
Cai
,
W.
, and
Tan
,
C.
,
2014
, “
Dynamic Stress Analysis of Battery Tabs Under Ultrasonic Welding
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041011
.
11.
Deng
,
L.
,
Li
,
Y. B.
,
Cai
,
W.
,
Haselhuhn
,
A. S.
, and
Carlson
,
B. E.
,
2020
, “
Simulating Thermoelectric Effect and Its Impact on Asymmetric Weld Nugget Growth in Aluminum Resistance Spot Welding
,”
ASME J. Manuf. Sci. Eng.
,
142
(
9
), p.
091001
.
12.
Hu
,
Z. L.
,
Yu
,
H. Y.
, and
Pang
,
Q.
,
2020
, “
Investigation of Interfacial Layer for Friction Stir Welded AA7075-T6 Aluminum to DP1180 Steel Joints
,”
ASME J. Manuf. Sci. Eng.
,
142
(
9
), p.
091002
.
13.
Rashid
,
A. A.
,
Imran
,
R.
,
Arif
,
Z. U.
, and
Khalid
,
M. Y.
,
2021
, “
Finite Element Simulation Technique for Evaluation of Opening Stresses Under High Plasticity
,”
ASME J. Manuf. Sci. Eng.
,
143
(
12
), p.
121005
.
14.
Carpenter
,
K.
, and
Tabei
,
A.
,
2021
, “
Optimization of the Weld Setup in Magnetically Assisted Laser Welding by Thermo-Magnetic Modeling
,”
ASME J. Manuf. Sci. Eng.
,
143
(
3
), p.
034501
.
15.
Schemmel
,
R.
,
Krieger
,
V.
,
Hemsel
,
T.
, and
Sextro
,
W.
,
2021
, “
Co-simulation of MATLAB and ANSYS for Ultrasonic Wire Bonding Process Optimization
,”
Microelectron. Reliab.
,
119
, p.
114077
.
16.
Liu
,
Z.
,
Li
,
Y.
,
Wang
,
Y.
,
Epureanu
,
B. I.
, and
Banu
,
M.
,
2021
, “
Nonlinear Friction Behavior in Ultrasonic Welding of Aluminum Alloy to Carbon Fiber Reinforced PA6 Composite
,”
J. Mater. Process. Technol.
,
296
(
1–2
), p.
117230
.
17.
Sanga
,
B.
,
Wattal
,
R.
, and
Nagesh
,
D. S.
,
2021
, “
An FEA Based Study of Thermal Behaviour of Ultrasonically Welded Phosphor Bronze Foils
,”
J. Mech. Eng. Sci.
,
15
(
2
), pp.
8057
8071
.
18.
Kumar
,
R. K.
, and
Omkumar
,
M.
,
2021
, “
Ultrasonic Welding of GF/PA6T Composites: Experimental Investigation and Process Optimization
,”
Mater. Today: Proc.
,
39
(
4
), pp.
1180
1186
.
19.
Du
,
P.
,
Chen
,
W.
,
Deng
,
J.
,
Li
,
K.
, and
Liu
,
Y.
,
2020
, “
Effects of Knurl Tooth Angle on Mechanical and Thermal Behaviors of Aluminum Ultrasonic Welding
,”
Ultrasonics
,
108
, p.
106207
.
20.
Huang
,
H.
,
Chen
,
J.
,
Yong
,
C. L.
,
Hu
,
X.
, and
Sun
,
X.
,
2019
, “
Heat Generation and Deformation in Ultrasonic Welding of Magnesium Alloy AZ31
,”
J. Mater. Process. Technol.
,
272
, pp.
125
136
.
21.
Lee
,
D.
, and
Cai
,
W. W.
,
2017
, “
The Effect of Horn Knurl Geometry on Battery Tab Ultrasonic Welding Quality: 2D Finite Element Simulations
,”
J. Manuf. Process.
,
28
(
3
), pp.
428
441
.
22.
Wu
,
X.
,
Liu
,
T.
, and
Cai
,
W.
,
2015
, “
Microstructure, Welding Mechanism, and Failure of Al/Cu Ultrasonic Welds
,”
J. Manuf. Process.
,
20
(
Part. 3
), pp.
515
524
.
23.
Jedrasiak
,
P.
, and
Shercliff
,
H. R.
,
2018
, “
Finite Element Analysis of Heat Generation in Dissimilar Alloy Ultrasonic Welding
,”
Mater. Des.
,
158
, pp.
184
197
.
24.
Kelly
,
G. S.
,
Advani
,
S. G.
,
Gillespie
,
J. W.
, and
Bogetti
,
T. A.
,
2013
, “
A Model to Characterize Acoustic Softening During Ultrasonic Consolidation
,”
J. Mater. Process. Technol.
,
213
(
11
), pp.
1835
1845
.
25.
Kong
,
C. Y.
,
Soar
,
R. C.
, and
Dickens
,
P. M.
,
2005
, “
A Model for Weld Strength in Ultrasonically Consolidated Components
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
219
(
1
), pp.
83
91
.
26.
Shen
,
N.
,
Samanta
,
A.
,
Ding
,
H.
, and
Cai
,
W. W.
,
2016
, “
Simulating Microstructure Evolution of Ultrasonic Welding of Battery Tabs
,”
Procedia Manuf.
,
5
, pp.
399
146
.
27.
Lee
,
D.
,
Kannatey-Asibu
,
E.
, and
Cai
,
W. W.
,
2013
, “
Ultrasonic Welding Simulations for Multiple Layers of Lithium-Ion Battery Tabs
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061011
.
28.
Shen
,
N.
,
Samanta
,
A.
,
Cai
,
W. W.
,
Rinker
,
T.
,
Carlson
,
B.
, and
Ding
,
H.
,
2020
, “
3D Finite Element Model of Dynamic Material Behaviors for Multilayer Ultrasonic Metal Welding
,”
J. Manuf. Process.
,
62
, pp.
302
312
.
29.
Kang
,
B.
,
Cai
,
W.
, and
Tan
,
C.
,
2014
, “
Vibrational Energy Loss Analysis in Battery Tab Ultrasonic Welding
,”
J. Manuf. Process.
,
16
(
2
), pp.
218
232
.
30.
Lee
,
S. S.
,
Kim
,
T. H.
,
Hu
,
S. J.
,
Cai
,
W. W.
, and
Abell
,
J. A.
,
2015
, “
Analysis of Weld Formation in Multilayer Ultrasonic Metal Welding Using High-Speed Images
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p.
031016
.
31.
Chen
,
K. K.
,
Zhang
,
Y. S.
, and
Wang
,
H. Z.
,
2017
, “
Effect of Acoustic Softening on the Thermal-Mechanical Process of Ultrasonic Welding
,”
Ultrasonics
,
75
, pp.
9
21
.
32.
Chen
,
K. K.
,
Zhang
,
Y. S.
, and
Wang
,
H. Z.
,
2017
, “
Study of Plastic Deformation and Interface Friction Process for Ultrasonic Welding
,”
Sci. Technol. Weld. Join.
,
22
(
3
), pp.
208
216
.
You do not currently have access to this content.