Abstract

Selective laser melting (SLM) process is a powder bed fusion additive manufacturing process that finds applications in aerospace and medical industries for its ability to produce complex geometry parts. As the raw material used is in the powder form, particle size distribution (PSD) is a significant characteristic that influences the build quality in turn affecting the functionality and esthetic aspects of the product. This article investigates the effect of PSD on the printed geometry for 316L stainless steel pow der, where three coupled in-house simulation tools based on discrete element method (DEM), computational fluid dynamics (CFD), and structural mechanics are employed. DEM is used for simulating the powder bed distribution based on the different powder PSD. The CFD is used as a virtual testbed to determine thermal parameters such as heat capacity and thermal conductivity of the powder bed viewed as a continuum. The values found as a stochastic function of the powder distribution are used to analyze the effect on the melted zone and deformation using structural mechanics. Results showed that mean particle size and PSD had a significant effect on the packing density, melt pool layer thickness, and the final layer thickness after deformation. Specifically, a narrow particle size distribution with smaller mean particle size and standard deviation produced solidified final layer thickness closest to nominal layer thickness. The proposed simulation approach and the results will catalyze the development of geometry assurance strategies to minimize the effect of particle size distribution on the geometric quality of the printed part.

References

1.
Tan
,
J. H.
,
Wong
,
W. L. E.
, and
Dalgarno
,
K. W.
,
2017
, “
An Overview of Powder Granulometry on Feedstock and Part Performance in the Selective Laser Melting Process
,”
Addit. Manuf.
,
18
, pp.
228
255
.
2.
Gu
,
H.
,
Gong
,
H.
,
Dilip
,
J.
,
Pal
,
D.
,
Hicks
,
A.
,
Doak
,
H.
, and
Stucker
,
B.
,
2014
, “
Effects of Powder Variation on the Microstructure and Tensile Strength of ti6al4v Parts Fabricated by Selective Laser Melting
,”
Proceedings of the 25th Annual International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 4–6
, pp.
4
6
.
3.
Strondl
,
A.
,
Lyckfeldt
,
O.
,
Brodin
,
H.
, and
Ackelid
,
U.
,
2015
, “
Characterization and Control of Powder Properties for Additive Manufacturing
,”
JOM
,
67
(
3
), pp.
549
554
.
4.
Mori
,
S.
,
Doi
,
K.
,
Maruyama
,
S.
,
Hanami
,
K.
,
Kitagaki
,
H.
,
Terauchi
,
S.
, and
Matsushita
,
T.
,
2018
, “
Effect of Particle Size on the Quality Characteristics of Pure Titanium Fabricated Using Metal Additive Manufacturing
,”
J. Jpn. Soc. Powder Powder Metall.
,
65
(
7
), pp.
431
435
.
5.
Balbaa
,
M.
,
Ghasemi
,
A.
,
Fereiduni
,
E.
,
Elbestawi
,
M.
,
Jad- hav
,
S.
, and
Kruth
,
J.-P.
,
2021
, “
Role of Powder Particle Size on Laser Powder Bed Fusion Processability of AlSi10 mg Alloy
,”
Addit. Manuf.
,
37
, p.
101630
.
6.
Jacob
,
G.
,
Jacob
,
G.
,
Brown
,
C. U.
, and
Donmez
,
A.
,
2018
,
The Influence of Spreading Metal Powders With Different Particle Size Distributions on the Powder Bed Density in Laser-Based Powder Bed Fusion Processes
,
US Department of Commerce, National Institute of Standards and Technology
,
Gaithersburg, MD
.
7.
Coe
,
H. G.
, and
Pasebani
,
S.
,
2020
, “
Use of Bimodal Particle Size Distribution in Selective Laser Melting of 316 l Stainless Steel
,”
J. Manuf. Mater. Process.
,
4
(
1
), p.
8
.
8.
Lee
,
Y.
, and
Zhang
,
W.
,
2016
, “
Modeling of Heat Transfer, Fluid Flow and Solidification Microstructure of Nickel-Base Superalloy Fabricated by Laser Powder Bed Fusion
,”
Addit. Manuf.
,
12
, pp.
178
188
.
9.
Rausch
,
A. M.
,
Küng
,
V. E.
,
Pobel
,
C.
,
Markl
,
M.
, and
Körner
,
C.
,
2017
, “
Predictive Simulation of Process Windows for Powder Bed Fusion Additive Manufacturing: Influence of the Powder Bulk Density
,”
Materials
,
10
(
10
), p.
1117
.
10.
Zhang
,
J.
,
Gu
,
D.
,
Yang
,
Y.
,
Zhang
,
H.
,
Chen
,
H.
,
Dai
,
D.
, and
Lin
,
K.
,
2019
, “
Influence of Particle Size on Laser Absorption and Scanning Track Formation Mechanisms of Pure Tungsten Powder During Selective Laser Melting
,”
Eng.
,
5
(
4
), pp.
736
745
.
11.
Letenneur
,
M.
,
Kreitcberg
,
A.
, and
Brailovski
,
V.
,
2019
, “
Optimization of Laser Powder Bed Fusion Processing Using a Combination of Melt Pool Modeling and Design of Experiment Approaches: Density Control
,”
J. Manuf. Mater. Process.
,
3
(
1
), p.
21
.
12.
Tian
,
Y.
,
Yang
,
L.
,
Zhao
,
D.
,
Huang
,
Y.
, and
Pan
,
J.
,
2020
, “
Numerical Analysis of Powder Bed Generation and Single Track Forming for Selective Laser Melting of ss316 l Stainless Steel
,”
J. Manuf. Process.
,
58
, pp.
964
974
.
13.
Dawes
,
J.
,
Bowerman
,
R.
, and
Trepleton
,
R.
,
2015
, “
Introduction to the Additive Manufacturing Powder Metallurgy Supply Chain
,”
Johnson Matthey Technol. Rev.
,
59
(
3
), pp.
243
256
.
14.
Phadke
,
M. S.
,
1995
,
Quality Engineering Using Robust Design
,
Prentice Hall PTR
,
Hoboken, NJ
.
15.
Cundall
,
P. A.
, and
Strack
,
O. D. L.
,
1979
, “
A Discrete Numerical Model for Granular Assemblies
,”
Geotechnique
,
29
(
1
), pp.
47
65
.
16.
Gohl
,
J.
,
Markstedt
,
K.
,
Mark
,
A.
,
Ha kansson
,
K.
,
Gatenholm
,
P.
, and
Edelvik
,
F.
,
2018
, “
Simulations of 3d Bioprinting: Predicting Bioprintability of Nanofibrillar Inks
,”
Biofabrication
,
10
(
3
), p.
034105
.
17.
Gohl
,
J.
,
Mark
,
A.
,
Sasic
,
S.
, and
Edelvik
,
F.
,
2018
, “
An Immersed Boundary Based Dynamic Contact Angle Framework for Handling Complex Surfaces of Mixed Wettabilities
,”
Int. J. Multiphase Flow
,
109
, pp.
164
177
.
18.
Gouge
,
M.
, and
Michaleris
,
P.
,
2018
,
Thermo-Mechanical Modeling of Additive Manufacturing
,
Butterworth-Heinemann
,
New York
.
20.
Kim
,
C. S.
,
1975
, “
Thermophysical Properties of Stainless Steels
,”
Argonne National Laboratory
,
IL
,
Technical Report
No. ANL-75-55.
21.
Mills
,
K. C.
,
2002
,
Recommended Values of Thermophysical Properties for Selected Commercial Alloys
,
Woodhead Publishing
,
Cambridge, UK
.
22.
Spierings
,
A. B.
, and
Levy
,
G.
,
2009
, “
Comparison of Density of Stainless Steel 316 l Parts Produced With Selective Laser Melting Using Different Powder Grades
,”
Proceedings of the Annual International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 3–5
, pp.
342
353
.
You do not currently have access to this content.