Abstract

The preheating system is a promising approach to decrease the axial load, improve the weld quality, and enhance the tool life during the friction stir welding (FSW) of high strength material. In the present work, conventional FSW and high-frequency induction heating-assisted friction stir welding (I-FSW) systems were used to join 3 mm thick Inconel 718 plates with a WC-10%Co tool and studied their performances. The welding was carried out at a constant rotational speed of 300 rpm, including varying traverse speeds of 90 mm/min and 140 mm/min and varying preheating temperatures (310 °C, 410 °C, and 700 °C). The results show that good weld joints were possible at high traverse speed (i.e., 140 mm/min) using the I-FSW at low preheating temperature (i.e., 310 °C). Grain refinement in the weld zone with and without preheated FSW led to improved mechanical properties. The increased size of intermetallic phases and carbide particles due to induction preheating in I-FSW was most likely to be responsible for the enhancement of the weld strength. The hardness of the stir zone was increased from 250 HV to 370 HV, and the ultimate tensile strength of the I-FSW joint reaches 740 MPa, which was 98.8% of the base material. The results also revealed that preheating affected the process temperature results lowering the axial force and frictional heat, which improved the tool life.

References

1.
Mishra
,
R. S.
, and
Ma
,
Z. Y.
,
2005
, “
Friction Stir Welding and Processing
,”
Mater. Sci. Eng. R Rep.
,
50
(
1–2
), pp.
1
78
.
2.
Kumar
,
K.
, and
Kailas
,
S. V.
,
2008
, “
The Role of Friction Stir Welding Tool on Material Flow and Weld Formation
,”
Mater. Sci. Eng. A
,
485
(
1–2
), pp.
367
374
.
3.
Liu
,
F. C.
,
Hovanski
,
Y.
,
Miles
,
M. P.
,
Sorensen
,
C. D.
, and
Nelson
,
T. W.
,
2018
, “
A Review of Friction Stir Welding of Steels: Tool, Material Flow, Microstructure, and Properties
,”
J. Mater. Sci. Technol.
,
34
(
1
), pp.
39
57
.
4.
Sato
,
Y. S.
,
Arkom
,
P.
,
Kokawa
,
H.
,
Nelson
,
T. W.
, and
Steel
,
R. J.
,
2008
, “
Effect of Microstructure on Properties of Friction Stir Welded Inconel Alloy 600
,”
Mater. Sci. Eng. A
,
477
(
1–2
), pp.
250
258
.
5.
Tiwari
,
A.
,
Singh
,
P.
,
Pankaj
,
P.
,
Biswas
,
P.
, and
Kore
,
S. D.
,
2019
, “
FSW of low Carbon Steel Using Tungsten Carbide (WC-10wt %Co) Based Tool Material
,”
J. Mech. Sci. Technol.
,
33
(
10
), pp.
4931
4938
.
6.
Song
,
K. H.
,
Kim
,
W. Y.
, and
Nakata
,
K.
,
2012
, “
Evaluation of Microstructures and Mechanical Properties of Friction Stir Welded lap Joints of Inconel 600/SS 400
,”
Mater. Des.
,
35
, pp.
126
132
.
7.
Song
,
K. H.
, and
Nakata
,
K.
,
2010
, “
Effect of Precipitation on Post-Heat-Treated Inconel 625 Alloy After Friction Stir Welding
,”
Mater. Des.
,
31
(
6
), pp.
2942
2947
.
8.
Lemos
,
G. V. B.
,
Farina
,
A. B.
,
Nunes
,
R. M.
,
da Cunha
,
P. H. C. P.
,
Bergmann
,
L.
,
dos Santos
,
J. F.
, and
Reguly
,
A.
,
2019
, “
Residual Stress Characterization in Friction Stir Welds of Alloy 625
,”
J. Mater. Res. Technol.
,
8
(
3
), pp.
2528
2537
.
9.
Ye
,
F.
,
Fujii
,
ÆH
, and
Tsumura
,
ÆT
,
2006
, “
Friction Stir Welding of Inconel Alloy 600
,”
J. Mater. Sci.
,
41
(
16
), pp.
5376
5379
.
10.
Xie
,
X.
,
Wang
,
G.
,
Xu
,
C.
,
Dong
,
J.
,
Cao
,
W.-D.
, and
Kennedy
,
R.
,
2005
, “
TTT Diagram of a Newly Developed Nickel-Base
,”
TMS (Miner., Met. Mater. Soc.)
,
25
, pp.
193
202
.
11.
Benoit
,
A.
,
Jobez
,
S.
,
Paillard
,
P.
,
Klosek
,
V.
, and
Baudin
,
T.
,
2011
, “
Study of Inconel 718 Weldability Using MIG CMT Process
,”
Sci. Technol. Weld. Joining
,
16
(
6
), pp.
477
482
.
12.
Janaki Ram
,
G. D.
,
Venugopal Reddy
,
A.
,
Prasad Rao
,
K.
, and
Madhusudhan Reddy
,
G.
,
2013
, “
Control of Laves Phase in Inconel 718 GTA Welds With Current Pulsing Control of Laves Phase in Inconel 718 GTA Welds With Current Pulsing
,”
Sci. Technol. Weld. Joining
,
9
(
5
), pp.
390
398
.
13.
Gas
,
S.
,
Geometry
,
G.
,
Section
,
W.
, et al
,
1971
, “
Some Problems in Welding Inconel 718
,” pp.
480
484
.
14.
Ahmed
,
M. M. Z.
,
Wynne
,
B. P.
, and
Martin
,
J. P.
,
2013
, “
Effect of Friction Stir Welding Speed on Mechanical Properties and Microstructure of Nickel Based Super Alloy Inconel 718 Effect of Friction Stir Welding Speed on Mechanical Properties and Microstructure of Nickel Based Super Alloy Inconel 718
,”
Sci. Technol. Weld. Joining
,
18
(
8), pp.
680
687
.
15.
Hanke
,
S.
,
Lemos
,
G. V. B.
,
Bergmann
,
L.
,
Martinazzi
,
D.
,
dos Santos
,
J. F.
, and
Strohaecker
,
T. R.
,
2017
, “
Degradation Mechanisms of pcBN Tool Material During Friction Stir Welding of Ni-Base Alloy 625
,”
Wear
,
376–377
, pp.
403
408
.
16.
Fall
,
A.
,
Fesharaki
,
M. H.
,
Khodabandeh
,
A. R.
, and
Jahazi
,
M.
,
2016
, “
Tool Wear Characteristics and Effect on Microstructure in Ti-6Al-4V Friction Stir Welded Joints
,”
Met. (Basel)
,
6
(
11
), p.
275
.
17.
Examiner
,
P.
, and
Stoner
,
K.
,
2004
, (12) United States Patent. 2.
18.
Sun
,
Y. F.
,
Konishi
,
Y.
,
Kamai
,
M.
, and
Fujii
,
H.
,
2013
, “
Microstructure and Mechanical Properties of S45C Steel Prepared by Laser-Assisted Friction Stir Welding
,”
Mater. Des.
,
47
, pp.
842
849
.
19.
Song
,
K. H.
,
Tsumura
,
T.
, and
Nakata
,
K.
,
2009
, “
Development of Microstructure and Mechanical Properties in Laser-FSW Hybrid Welded Inconel 600
,”
Mater. Trans.
,
50
(
7
), pp.
1832
1837
.
20.
Yaduwanshi
,
D. K.
,
Pal
,
S.
, and
Bag
,
S.
,
2014
, “
Effect of Preheating on Mechanical Properties of Hybrid Friction Stir Welded Dissimilar Joint
,”
J. Mater. Eng. Perform.
,
23
(
10
), pp.
3794
3803
.
21.
Mehta
,
K. P.
, and
Badheka
,
V. J.
,
2017
, “
Hybrid Approaches of Assisted Heating and Cooling for Friction Stir Welding of Copper to Aluminum Joints
,”
J. Mater. Process. Technol.
,
239
, pp.
336
345
.
22.
Liu
,
X.
,
Lan
,
S.
, and
Ni
,
J.
,
2015
, “
Electrically Assisted Friction Stir Welding for Joining Al 6061 to TRIP
,”
J Mater Process Tech
,
219
, pp.
112
123
.
23.
Ji
,
S.
,
Li
,
Z.
,
Wang
,
Y.
, and
Ma
,
L.
,
2017
, “
Joint Formation and Mechanical Properties of Back Heating Assisted Friction Stir Welded Ti—6Al—4 V Alloy
,”
Mater. Des.
,
113
, pp.
37
46
.
24.
Sinclair
,
P. C.
,
Longhurst
,
W. R.
,
Cox
,
C. D.
,
Lammlein
,
D. H.
,
Strauss
,
A. M.
, and
Cook
,
G. E.
,
2010
, “
Heated Friction Stir Welding: An Experimental and Theoretical Investigation Into how Preheating Influences Process Forces
,”
Mater. Manuf. Processes
,
25
(
11
), pp.
1283
1291
.
25.
Zinn
,
S.
, and
Semiatin
,
L.
,
1988
,
Elements of Induction Heating: Design, Control, and Applications
,
ASM International
. 335
26.
Dughiero
,
F.
,
2018
, “
Induction Heating: Fundamentals Induction Heating Fundamentals
,” pp.
1
29
.
27.
Sun
,
Y. F.
,
Shen
,
J. M.
,
Morisada
,
Y.
, and
Fujii
,
H.
,
2014
, “
Spot Friction Stir Welding of Low Carbon Steel Plates Preheated by High Frequency Induction
,”
Mater. Des.
,
54
, pp.
450
457
.
28.
Álvarez
,
A. I.
,
García
,
M.
,
Pena
,
G.
,
Sotelo
,
J.
, and
Verdera
,
D.
,
2014
, “
Evaluation of an Induction-Assisted Friction Stir Welding Technique for Super Duplex Stainless Steels
,”
Surf. Interface Anal.
,
46
(
10–11
), pp.
892
896
.
29.
Cheon
,
J.
,
Park
,
T.
,
Yoon
,
J.
, and
Kim
,
C.
,
2019
, “
Evaluation of a High-Frequency Induction Heating Assisted Friction Stir Welding Process on Carbon Steel Sheets
,”
J. Weld. Joining
,
37
(
5
), pp.
501
507
.
30.
Vijendra
,
B.
, and
Sharma
,
A.
,
2015
, “
Induction Heated Tool Assisted Friction-Stir Welding (i-FSW): A Novel Hybrid Process for Joining of Thermoplastics
,”
J. Manuf. Process.
,
20
(
Part 1
), pp.
234
244
.
31.
Heating
,
I.
, and
Treating
,
H.
,
2001
, Theory of Heating by Induction.
32.
Pankaj
,
P.
,
Tiwari
,
A.
,
Biswas
,
P.
,
Rao
,
A. G.
, and
Pal
,
S.
,
2020
, “
Experimental Studies on Controlling of Process Parameters in Dissimilar Friction Stir Welding of DH36 Shipbuilding Steel–AISI 1008 Steel
,”
Weld. World
,
64
(
6
), pp.
10
12
.
33.
Hesari
,
F. A.
,
Moradi
,
M.
, and
Torknik
,
F. S.
,
2019
, “
Transmission Electron Microscopy Sample Preparation of Inconel 738 Nickel-Base Superalloy
,”
Int. J. Eng., Trans. B
,
32
(
6
), pp.
852
859
.
34.
Mukhopadhyay
,
S. M.
,
2003
, “Sample Preparation for Microscopic and Spectroscopic Characterization of Solid Surfaces and Films,”
Sample Preparation Techniques in Analytical Chemistry
, pp.
377
411
.
35.
Razdolescu
,
A. C.
,
Sahagia
,
M.
,
Luca
,
A.
,
Bercea
,
S.
,
Dumitrescu
,
C.
, and
Schrader
,
H.
,
2002
, “
Results Obtained in the Metrological Certification of a Commercially Available Radionuclide Calibrator
,”
Appl. Radiat. Isot.
,
56
(
6
), pp.
957
958
.
36.
Papahn
,
H.
,
Bahemmat
,
P.
,
Haghpanahi
,
M.
, and
Aminaie
,
I. P.
,
2015
, “
Effect of Friction Stir Welding Tool on Temperature, Applied Forces and Weld Quality
,”
IET Sci., Meas. Technol.
,
9
(
4
), pp.
475
484
.
37.
Huang
,
D. F.
,
2008
,
Investigation of Heterogeneity of FSW Inconel 718 Coupled With Welding Thermal Cycle
,
Brigham Young University
.
38.
Tiwari
,
A.
,
Pankaj
,
P.
,
Suman
,
S.
,
Singh
,
P.
,
Biswas
,
P.
,
Pal
,
S.
, and
Gourav Rao
,
A.
,
2021
, “
Effect of Plasma Preheating on Weld Quality and Tool Life During Friction Stir Welding of DH36 Steel
,”
Proc. Inst. Mech. Eng., Part B
,
235
(
9
), pp.
1458
1472
.
39.
Ramkumar
,
K. D.
,
Patel
,
S. D.
,
Sri Praveen
,
S.
,
Choudhury
,
D. J.
,
Prabaharan
,
P.
,
Arivazhagan
,
N.
, and
Anthony Xavior
,
M.
,
2014
, “
Influence of Filler Metals and Welding Techniques on the Structure—Property Relationships of Inconel 718 and AISI 316L Dissimilar Weldments
,”
Mater. Des.
,
62
, pp.
175
188
.
40.
Gupta
,
R. K.
,
Das
,
H.
, and
Pal
,
T. K.
,
2012
, “
Influence of Processing Parameters on Induced Energy, Mechanical and Corrosion Properties of FSW Butt Joint of 7475 AA
,”
J. Mater. Eng. Perform.
,
21
(
8
), pp.
1645
1654
.
41.
Prasad
,
K. S.
,
Panda
,
S. K.
,
Kar
,
S. K.
,
Murty
,
S. V. S. N.
, and
Sharma
,
S. C.
,
2018
, “
Effect of Solution Treatment on Deep Drawability of IN718 Sheets: Experimental Analysis and Metallurgical Characterization
,”
Mater. Sci. Eng. A
,
727
, pp.
97
112
.
You do not currently have access to this content.