Abstract

Lightweight and cost-effective polymer matrix composites (PMCs) with extraordinary mechanical performance will be a key to the next generation of diverse industrial applications, such as aerospace, electric automobile, and biomedical devices. Limpet teeth made of mineral-polymer composites have been proved as nature’s strongest material due to the unique hierarchical architectures of mineral fiber alignment. Here, we present an approach to build limpet teeth inspired structural materials with precise control of geometric morphologies of microstructures by magnetic field-assisted 3D printing (MF-3DP). α-Iron (III) oxide-hydroxide nanoparticles (α-FeOOHs) are aligned by the magnetic field during 3D printing and aligned α-FeOOHs (aFeOOHs) bundles are further grown to aligned goethite-based bundles (aGBs) by rapid thermal treatment after printing. The mechanical reinforcement of aGBs in PMCs can be modulated by adjusting the geometric morphology and alignment of α-FeOOHs encapsulated inside the 3D printed PMCs. In order to identify the mechanical enhancement mechanism, physics-based modeling, simulation, and tests were conducted, and the results further guided the design of bioinspired goethite-based PMCs. The correlation of the geometric morphology of self-assembled α-FeOOHs, curing characteristics of α-FeOOHs/polymer composite, and process parameters were identified to establish the optimal design of goethite-based PMCs. The 3D printed PMCs with aGBs show promising mechanical reinforcement compared with PMCs without aGBs. This study opens intriguing perspectives for designing high strength 3D printed PMCs on the basis of bioinspired architectures with customized configurations.

References

1.
Yang
,
Y.
,
Song
,
X.
,
Li
,
X.
,
Chen
,
Z.
,
Zhou
,
C.
,
Zhou
,
Q.
, and
Chen
,
Y.
,
2018
, “
Recent Progress in Biomimetic Additive Manufacturing Technology: From Materials to Functional Structures
,”
Adv. Mater.
,
30
(
36
), p.
1706539
.
2.
Leung
,
Y. S.
,
Kwok
,
T. H.
,
Li
,
X.
,
Yang
,
Y.
,
Wang
,
C. C.
, and
Chen
,
Y.
,
2018
, “
Challenges and Status on Design and Computation for Emerging Additive Manufacturing Technologies
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
2
), p.
021013
.
3.
Studart
,
A. R.
,
2016
, “
Additive Manufacturing of Biologically-Inspired Materials
,”
Chem. Soc. Rev.
,
45
(
2
), pp.
359
376
.
4.
Li
,
X.
, and
Chen
,
Y.
,
2017
, “
Micro-scale Feature Fabrication Using Immersed Surface Accumulation
,”
J. Manuf. Processes
,
28
(
3
), pp.
531
540
.
5.
Li
,
X.
,
Yang
,
Y.
,
Liu
,
L.
,
Chen
,
Y.
,
Chu
,
M.
,
Sun
,
H.
,
Shan
,
W.
, and
Chen
,
Y.
,
2020
, “
3D-Printed Cactus-Inspired Spine Structures for Highly Efficient Water Collection
,”
Adv. Mater. Interfaces
,
7
(
3
), p.
1901752
.
6.
Li
,
X.
,
Mao
,
H.
,
Pan
,
Y.
, and
Chen
,
Y.
,
2019
, “
Mask Video Projection-Based Stereolithography With Continuous Resin Flow
,”
ASME J. Manuf. Sci. Eng.
,
141
(
8
), p.
081007
.
7.
Li
,
X.
,
Yang
,
Y.
,
Xie
,
B.
,
Chu
,
M.
,
Sun
,
H.
,
Hao
,
S.
,
Chen
,
Y.
, and
Chen
,
Y.
,
2019
, “
3D Printing of Flexible Liquid Sensor Based on Swelling Behavior of Hydrogel with Carbon Nanotubes
,”
Adv. Mater. Technol.
,
4
(
2
), p.
1800476
.
8.
Liu
,
Z.
,
Zhang
,
Z.
, and
Ritchie
,
R. O.
,
2020
, “
Structural Orientation and Anisotropy in Biological Materials: Functional Designs and Mechanics
,”
Adv. Funct. Mater.
,
30
(
10
), p.
1908121
.
9.
Yang
,
Y.
,
Li
,
X.
,
Chu
,
M.
,
Sun
,
H.
,
Jin
,
J.
,
Yu
,
K.
,
Wang
,
Q.
,
Zhou
,
Q.
, and
Chen
,
Y.
,
2019
, “
Electrically Assisted 3D Printing of Nacre-Inspired Structures with Self-Sensing Capability
,”
Sci. Adv.
,
5
(
4
), p.
eaau9490
.
10.
Suksangpanya
,
N.
,
Yaraghi
,
N. A.
,
Kisailus
,
D.
, and
Zavattieri
,
P.
,
2017
, “
Twisting Cracks in Bouligand Structures
,”
J. Mech. Behav. Biomed. Mater.
,
76
, pp.
38
57
.
11.
Li
,
X. W.
,
Ji
,
H. M.
,
Yang
,
W.
,
Zhang
,
G. P.
, and
Chen
,
D. L.
,
2017
, “
Mechanical Properties of Crossed-Lamellar Structures in Biological Shells: A Review
,”
J. Mech. Behav. Biomed. Mater.
,
74
, pp.
54
71
.
12.
Chen
,
P. Y.
,
McKittrick
,
J.
, and
Meyers
,
M. A.
,
2012
, “
Biological Materials: Functional Adaptations and Bioinspired Designs
,”
Prog. Mater. Sci.
,
57
(
8
), pp.
1492
1704
.
13.
Li
,
X.
,
Shan
,
W.
,
Yang
,
Y.
,
Joralmon
,
D.
,
Zhu
,
Y.
,
Chen
,
Y.
,
Yuan
,
Y.
,
Xu
,
H.
,
Rong
,
J.
,
Dai
,
R.
,
Nian
,
Q.
,
Chai
,
Y.
, and
Chen
,
Y.
,
2020
, “
Limpet Tooth-Inspired Painless Microneedles Fabricated by Magnetic Field-Assisted 3D Printing
,”
Adv. Funct. Mater.
,
31
(
5
), p.
2003725
.
14.
Barber
,
A. H.
,
Lu
,
D.
, and
Pugno
,
N. M.
,
2015
, “
Extreme Strength Observed in Limpet Teeth
,”
J. R. Soc., Interface
,
12
(
105
), p.
20141326
.
15.
Mann
,
S.
,
Perry
,
C. C.
,
Webb
,
J.
,
Luke
,
B.
, and
Williams
,
R. J. P.
,
1986
, “
Structure, Morphology, Composition and Organization of Biogenic Minerals in Limpet Teeth
,”
Proc. R. Soc. London, B
,
227
(
1247
), pp.
179
190
.
16.
Xie
,
X. L.
,
Mai
,
Y. W.
, and
Zhou
,
X. P.
,
2005
, “
Dispersion and Alignment of Carbon Nanotubes in Polymer Matrix: a Review
,”
Mater. Sci. Eng. R Rep.
,
49
(
4
), pp.
89
112
.
17.
Joyee
,
E. B.
,
Szmelter
,
A.
,
Eddington
,
D.
, and
Pan
,
Y.
,
2020
, “
Magnetic Field-Assisted Stereolithography for Productions of Multimaterial Hierarchical Surface Structures
,”
ACS Appl. Mater. Interfaces
,
12
(
37
), pp.
42357
42368
.
18.
Safaee
,
S.
, and
Chen
,
R.
,
2019
, “
Investigation of a Magnetic Field-Assisted Digital-Light-Processing Stereolithography for Functionally Graded Materials
,”
Procedia Manuf.
,
34
, pp.
731
737
.
19.
Martin
,
J. J.
,
Fiore
,
B. E.
, and
Erb
,
R. M.
,
2015
, “
Designing Bioinspired Composite Reinforcement Architectures via 3D Magnetic Printing
,”
Nat. Commun.
,
6
(
1
), pp.
1
7
.
20.
Saheb
,
D. N.
, and
Jog
,
J. P.
,
1999
, “
Natural Fiber Polymer Composites: A Review
,”
Adv. Polym. Technol.
,
18
(
4
), pp.
351
363
.
21.
Li
,
X.
,
Xie
,
B.
,
Jin
,
J.
,
Chai
,
Y.
, and
Chen
,
Y.
,
2018
, “
3D Printing Temporary Crown and Bridge by Temperature Controlled Mask Image Projection Stereolithography
,”
Procedia Manuf.
,
26
, pp.
1023
1033
.
22.
Li
,
X.
,
Baldacchin
,
T.
,
Song
,
X.
, and
Chen
,
Y.
,
2016
, “
Multi-Scale Additive Manufacturing: An Investigation on Building Objects With Macro-, Micro- and Nano-Scales Features
,”
11th International Conference on Micro Manufacturing
,
Irvine, CA
,
Mar. 29
, p.
96
.
23.
Campbell
,
P.
,
1996
,
Permanent Magnet Materials and Their Application
,
Cambridge University Press
,
Cambridge, UK
.
24.
Spaldin
,
N. A.
,
2010
,
Magnetic Materials: Fundamentals and Applications
,
Cambridge University Press
,
Cambridge, UK
.
25.
Joyee
,
E. B.
,
Lu
,
L.
, and
Pan
,
Y.
,
2019
, “
Analysis of Mechanical Behavior of 3D Printed Heterogeneous Particle-Polymer Composites
,”
Composites, Part B
,
173
, p.
106840
.
26.
Yasui
,
M.
, and
Ikuta
,
K.
,
2017
, “
Modeling and Measurement of Curing Properties of Photocurable Polymer Containing Magnetic Particles and Microcapsules
,”
Microsyst. Nanoeng.
,
3
(
1
), pp.
1
9
.
27.
Zhang
,
C.
,
Li
,
X.
,
Jiang
,
L.
,
Tang
,
D.
,
Xu
,
H.
,
Zhao
,
P.
,
Fu
,
J.
,
Zhou
,
Q.
, and
Chen
,
Y.
,
2021
, “
3D Printing of Functional Magnetic Materials: From Design to Applications
,”
Adv. Funct. Mater.
,
31
(
34
), p.
2102777
.
28.
Yang
,
Y.
,
Li
,
X.
, and
Chen
,
Y.
,
2020
, “
Additive Manufacturing of Bio-Inspired Structures via Nanocomposite 3D Printing
,”
Manufacturing in the Era of 4th Industrial Revolution: A World Scientific Reference Volume 1: Recent Advances in Additive Manufacturing
, pp.
127
161
.
29.
Zhu
,
Y.
,
Joralmon
,
D.
,
Shan
,
W.
,
Chen
,
Y.
,
Rong
,
J.
,
Zhao
,
H.
,
Xiao
,
S.
, and
Li
,
X.
,
2021
, “
3D Printing Biomimetic Materials and Structures for Biomedical Applications
,”
Bio-Des. Manuf.
,
4
, pp.
405
428
.
30.
Li
,
X.
, and
Chen
,
Y.
,
2018
, “
Multi-scale 3D Printing of Bioinspired Structures with Functional Surfaces
,”
Proceedings of the International Symposium on Flexible Automation 2018 International Symposium on Flexible Automation
, pp.
13
20
. The Institute of Systems, Control and Information Engineers
You do not currently have access to this content.