Abstract

The composite sheet layup process involves stacking several layers of a viscoelastic prepreg sheet and curing the laminate to manufacture the component. Demands for automating functional tasks in the composite manufacturing processes have dramatically increased in the past decade. A simulation system representing a digital twin of the composite sheet can aid in the development of such an autonomous system for prepreg sheet layup. While finite element analysis (FEA) is a popular approach for simulating flexible materials, material properties need to be encoded to produce high-fidelity mechanical simulations. We present a methodology to predict material parameters of a thin-shell FEA model based on real-world observations of the deformations of the object. We utilize the model to develop a digital twin of a composite sheet. The method is tested on viscoelastic composite prepreg sheets and fabric materials such as cotton cloth, felt, and canvas. We discuss the implementation and development of a high-speed FEA simulator based on the VegaFEM library. By using our method to identify sheet material parameters, the sheet simulation system is able to predict sheet behavior within 5 cm of average error and have proven its capability for 10 fps real-time sheet simulation.

References

1.
Mazumdar
,
S.
,
Pichler
,
D.
,
Benevento
,
M.
,
Seneviratine
,
W.
,
Liang
,
R.
, and
Witten
,
E.
,
2020
, “
American Composites Manufacturing Association 2020 State of the Industry Report
,” http://compositesmanufacturingmagazine.com/2020/01/2020-state-of-the-industry-report/
2.
Fleischer
,
J.
,
Teti
,
R.
,
Lanza
,
G.
,
Mativenga
,
P.
,
Möhring
,
H.-C.
, and
Caggiano
,
A.
,
2018
, “
Composite Materials Parts Manufacturing
,”
CIRP Annals
,
67
(
2
), pp.
603
626
.
3.
Barile
,
C.
,
Casavola
,
C.
, and
De Cillis
,
F.
,
2019
, “
Mechanical Comparison of New Composite Materials for Aerospace Applications
,”
Comp. Part B: Eng.
,
162
, pp.
122
128
.
4.
Malhan
,
R. K.
,
Kabir
,
A. M.
,
Shah
,
B.
,
Centea
,
T.
, and
Gupta
,
S. K.
,
2018
, “
Automated Prepreg Sheet Placement Using Collaborative Robotics
,”
North America Society for the Advancement of Material and Process Engineering (SAMPE)
,
Long Beach, CA
,
May 21–24
.
5.
Malhan
,
R. K.
,
Kabir
,
A. M.
,
Shah
,
B.
,
Centea
,
T.
, and
Gupta
,
S. K.
,
2018
, “
Hybrid Cells for Multi-Layer Prepreg Composite Sheet Layup
,”
IEEE International Conference on Automation Science and Engineering (CASE)
,
Munich, Germany
.
6.
Malhan
,
R. K.
,
Kabir
,
A. M.
,
Shah
,
B.
,
Centea
,
T.
, and
Gupta
,
S. K.
,
2019
, “
Determining Feasible Robot Placements in Robotic Cells for Composite Prepreg Sheet Layup
,”
ASMEs 14th Manufacturing Science and Engineering Conference
,
Erie, PA
,
June 10–14
.
7.
Malhan
,
R. K.
,
Kabir
,
A. M.
,
Shah
,
B. C.
, and
Gupta
,
S. K.
,
2019
, “
Identifying Feasible Workpiece Placement With Respect to Redundant Manipulator for Complex Manufacturing Tasks
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Montreal, Canada
,
May 20–24
.
8.
Malhan
,
R. K.
,
Shembekar
,
A. V.
,
Kabir
,
A. M.
,
Bhatt
,
P. M.
,
Shah
,
B.
,
Zanio
,
S.
,
Nutt
,
S.
, and
Gupta
,
S. K.
,
2021
, “
Automated Planning for Robotic Layup of Composite Prepreg
,”
Robot. Comput. Integr. Manuf.
,
67
, p.
102020
.
9.
Sin
,
F. S.
,
Schroeder
,
D.
, and
Barbič
,
J.
,
2012
, “
Vega FEM Library
,” http://www.jernejbarbic.com/vega
10.
Chen
,
Y.
,
Joseph
,
R.
,
Kanyuck
,
A.
,
Khan
,
S.
,
Malhan
,
R. K.
,
Manyar
,
O. M.
,
McNulty
,
Z.
,
Wang
,
B.
,
Barbic
,
J.
, and
Gupta
,
S. K.
,
2021
, “
A Digital Twin for Automated Layup of Prepreg Composite Sheets
,”
Manufacturing Sciences and Engineering Conference
,
Virtual
,
June
.
11.
Aono
,
M.
,
Breen
,
D. E.
, and
Wozny
,
M. J.
,
1994
, “
Fitting a Woven-Cloth Model to a Curved Surface: Mapping Algorithms
,”
Comput. Aided Des.
,
26
(
4
), pp.
278
292
.
12.
Wang
,
J.
,
Paton
,
R.
, and
Page
,
J.
,
1999
, “
The Draping of Woven Fabric Preforms and Prepregs for Production of Polymer Composite Components
,”
Compos. Part A: Appl. Sci. Manuf.
,
30
(
6
), pp.
757
765
.
13.
Aono
,
M.
,
1990
, “
A Wrinkle Propagation Model for Cloth
,”
CG International’90
,
Springer
, pp.
95
115
.
14.
Collier
,
J. R.
,
Collier
,
B. J.
,
O’Toole
,
G.
, and
Sargand
,
S.
,
1991
, “
Drape Prediction by Means of Finite-Element Analysis
,”
J. Text. Inst.
,
82
(
1
), pp.
96
107
.
15.
Krogh
,
C.
,
Glud
,
J. A.
, and
Jakobsen
,
J.
,
2019
, “
Modeling the Robotic Manipulation of Woven Carbon Fiber Prepreg Plies Onto Double Curved Molds: A Path-Dependent Problem
,”
J. Compos. Mater.
,
53
(
15
), pp.
2149
2164
.
16.
Tamstorf
,
R.
, and
Grinspun
,
E.
,
2013
, “
Discrete Bending Forces and Their Jacobians
,”
Graph. Models
,
75
(
6
), pp.
362
370
.
17.
Volino
,
P.
,
Magnenat-Thalmann
,
N.
, and
Faure
,
F.
,
2009
, “
A Simple Approach to Nonlinear Tensile Stiffness for Accurate Cloth Simulation
,”
ACM Transactions on Graphics
,
28
(
4
), pp.
1
16
.
18.
Ng
,
H. N.
, and
Grimsdale
,
R. L.
,
1996
, “
Computer Graphics Techniques for Modeling Cloth
,”
IEEE Comput. Graph. Appl.
,
16
(
5
), pp.
28
41
.
19.
Elkington
,
M.
,
Ward
,
C.
, and
Sarkytbayev
,
A.
,
2017
, “
Automated Composite Draping: A Review
,”
SAMPE SEATTLE 2017
,
Seattle, WA
,
May 22
.
20.
Hancock
,
S. G.
, and
Potter
,
K. D.
,
2006
, “
The Use of Kinematic Drape Modelling to Inform the Hand Lay-Up of Complex Composite Components Using Woven Reinforcements
,”
Compos. Part A: Appl. Sci. Manuf.
,
37
(
3
), pp.
413
422
.
21.
Sharma
,
S. B.
, and
Sutcliffe
,
M. P. F.
,
2003
, “
Draping of Woven Fabrics: Progressive Drape Model
,”
Plast. Rubber Compos.
,
32
(
2
), pp.
57
64
.
22.
Breen
,
D. E.
,
House
,
D. H.
, and
Getto
,
P. H.
,
1992
, “
A Physically-Based Particle Model of Woven Cloth
,”
Visual Comput.
,
8
(
5–6
), pp.
264
277
.
23.
Breen
,
D. E.
,
House
,
D. H.
, and
Wozny
,
M. J.
,
1994
, “
A Particle-Based Model for Simulating the Draping Behavior of Woven Cloth
,”
Text. Res. J.
,
64
(
11
), pp.
663
685
.
24.
House
,
D.
, and
Breen
,
D.
,
2000
,
Cloth Modeling and Animation
,
CRC Press
,
Boca Raton, FL
.
25.
Provot
,
X.
,
1995
, “
Deformation Constraints in a Mass-Spring Model to Describe Rigid Cloth Behaviour
,”
Graphics Interface '95
,
23
(
19
), pp.
147
147
.
26.
Kawabata
,
S.
,
1980
,
The Standardization and Analysis of Hand Evaluation
, 2nd,
Textile Machinery Society of Japan
,
Osaka, Japan
.
27.
Baraff
,
D.
, and
Witkin
,
A. P.
,
1998
, “
Large Steps in Cloth Simulation
,”
SIGGRAPH '98: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques
, pp.
43
54
.
28.
Sin
,
F. S.
,
Schroeder
,
D.
, and
Barbič
,
J.
,
2013
, “
Vega: Nonlinear FEM Deformable Object Simulator
,”
Comput. Graph.
,
32
(
1
), pp.
38
50
.
29.
Johnson
,
S. G.
, “
The NLopt Nonlinear-Optimization Package
,” http://github.com/stevengj/nlopt
30.
Runarsson
,
T. P.
, and
Yao
,
X.
,
2005
, “
Search Biases in Constrained Evolutionary Optimization
,”
IEEE Trans. Syst. Man Cybernet. Part C: Appl. Rev.
,
35
(
2
), pp.
233
243
.
31.
Volino
,
P.
,
Magnenat-Thalmann
,
N.
, and
Faure
,
F.
,
2009
, “
A Simple Approach to Nonlinear Tensile Stiffness for Accurate Cloth Simulation
,”
ACM Trans. Graph.
,
28
(
4
), pp.
1
16
.
32.
Da
,
F.
, and
Cohen-Steiner
,
D.
,
2020
,
Advancing Front Surface Reconstruction
, 5.0.2 ed.,
CGAL Editorial Board
.
33.
Digne
,
J.
,
Morel
,
J. M.
,
Souzani
,
C. M.
, and
Lartigue
,
C.
,
2011
, “
Scale Space Meshing of Raw Data Point Sets
,”
Comput. Graph. Forum
,
30
(
6
), pp.
1630
1642
.
34.
Manyar
,
O. M.
,
Desai
,
J. A.
,
Deogaonkar
,
N.
,
Joseph
,
R. J.
,
Malhan
,
R. K.
,
McNulty
,
Z.
,
Wang
,
B.
,
Barbič
,
J.
, and
Gupta
,
S. K.
,
2021
, “
A Simulation-Based Grasp Planner for Enabling Robotic Grasping During Composite Sheet Layup
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Xi’an, China
,
May 30–June 5
.
You do not currently have access to this content.