Abstract

The chief objective of manufacturing process improvement efforts is to significantly minimize process resources such as time, cost, waste, and consumed energy while improving product quality and process productivity. This paper presents a novel physics-informed optimization approach based on artificial intelligence (AI) to generate digital process twins (DPTs). The utility of the DPT approach is demonstrated in the case of finish machining of aerospace components made from gamma titanium aluminide alloy (γ-TiAl). This particular component has been plagued with persistent quality defects, including surface and sub-surface cracks, which adversely affect resource efficiency. Previous process improvement efforts have been restricted to anecdotal post-mortem investigation and empirical modeling, which fail to address the fundamental issue of how and when cracks occur during cutting. In this work, the integration of in-situ process characterization with modular physics-based models is presented, and machine learning algorithms are used to create a DPT capable of reducing environmental and energy impacts while significantly increasing yield and profitability. Based on the preliminary results presented here, an improvement in the overall embodied energy efficiency of over 84%, 93% in process queuing time, 2% in scrap cost, and 93% in queuing cost has been realized for γ-TiAl machining using our novel approach.

References

1.
Brinksmeier
,
E.
,
Klocke
,
F.
,
Lucca
,
D. A.
,
Sölter
,
J.
, and
Meyer
,
D.
,
2014
, “
Process Signatures–A New Approach to Solve the Inverse Surface Integrity Problem in Machining Processes
,”
Procedia CIRP
,
13
(
2
), pp.
429
434
.
2.
Brinksmeier
,
E.
,
Meyer
,
D.
,
Heinzel
,
C.
,
Lübben
,
T.
,
Sölter
,
J.
,
Langenhorst
,
L.
,
Frerichs
,
F.
,
Kämmler
,
J.
,
Kohls
,
E.
, and
Kuschel
,
S.
,
2018
, “
Process Signatures-The Missing Link to Predict Surface Integrity in Machining
,”
Procedia CIRP
,
71
(
4
), pp.
3
10
.
3.
Bolcavage
,
A.
,
Brown
,
P. D.
,
Cedoz
,
R.
,
Cooper
,
N.
,
Deaton
,
C.
,
Hartman
,
D. R.
,
Keskin
,
A.
,
Ma
,
K.
,
Matlik
,
J. F.
, and
Modgil
,
G.
,
2014
, “
Integrated Computational Materials Engineering From a gas Turbine Engine Perspective
,”
Integr. Mater. Manuf. Innov.
,
3
(
1
), p.
13
.
4.
Arrazola
,
P.
,
Özel
,
T.
,
Umbrello
,
D.
,
Davies
,
M.
, and
Jawahir
,
I.
,
2013
, “
Recent Advances in Modelling of Metal Machining Processes
,”
CIRP Ann.
,
62
(
2
), pp.
695
718
.
5.
Schwerd
,
F.
,
1935
, “
Filmaufnahmen des Ablaufenden Spans bei Ueblichen und bei Selir Hohen Schnittgeschwindigkeiter
,”
Z. VDI
,
80
(
1935
), p.
119
.
6.
Stevenson
,
M.
, and
Oxley
,
P.
,
1969
, “
An Experimental Investigation of the Influence of Speed and Scale on the Strain-Rate in a Zone of Intense Plastic Deformation
,”
Proc. Inst. Mech. Eng.
,
184
(
1
), pp.
561
576
.
7.
Childs
,
T.
,
1971
, “
A new Visio-Plasticity Technique and a Study of Curly Chip Formation
,”
Int. J. Mech. Sci.
,
13
(
4
), pp.
373
387
.
8.
Lee
,
S.
,
Hwang
,
J.
,
Shankar
,
M. R.
,
Chandrasekar
,
S.
, and
Compton
,
W. D.
,
2006
, “
Large Strain Deformation Field in Machining
,”
Metall. Mater Trans. A
,
37
(
5
), pp.
1633
1643
.
9.
Harzallah
,
M.
,
Pottier
,
T.
,
Gilblas
,
R.
,
Landon
,
Y.
,
Mousseigne
,
M.
, and
Senatore
,
J.
,
2018
, “
A Coupled in-Situ Measurement of Temperature and Kinematic Fields in Ti-6Al-4V Serrated Chip Formation at Micro-Scale
,”
Int. J. Mach. Tools Manuf.
,
130
, pp.
20
35
.
10.
Guo
,
Y.
,
Compton
,
W. D.
, and
Chandrasekar
,
S.
,
2015
, “
In Situ Analysis of Flow Dynamics and Deformation Fields in Cutting and Sliding of Metals
,”
Proc. R. Soc. A
,
471
(
2178
), p.
20150194
.
11.
Schoop
,
J.
,
Adeniji
,
D.
, and
Brown
,
I.
,
2019
, “
Computationally Efficient, Multi-Domain Hybrid Modeling of Surface Integrity in Machining and Related Thermomechanical Finishing Processes
,”
Procedia CIRP
,
82
(
17
), pp.
356
361
.
12.
Jawahir
,
I.
,
Schoop
,
J.
,
Kaynak
,
Y.
,
Balaji
,
A.
,
Ghosh
,
R.
, and
Lu
,
T.
,
2020
, “
Progress Toward Modeling and Optimization of Sustainable Machining Processes
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p.
110811
.
13.
Schoop
,
J.
,
Poonawala
,
H. A.
,
Adeniji
,
D.
, and
Clark
,
B.
,
2021
, “
AI-enabled Dynamic Finish Machining Optimization for Sustained Surface Integrity
,”
Manuf. Lett.
,
29
, pp.
42
46
.
14.
Schoop
,
J.
,
2021
, “
In-Situ Calibrated Modeling of Residual Stresses Induced in Machining Under Various Cooling and Lubricating Environments
,”
Lubricants
,
9
(
3
), p.
28
.
15.
Uhlemann
,
T. H.-J.
,
Lehmann
,
C.
, and
Steinhilper
,
R.
,
2017
, “
The Digital Twin: Realizing the Cyber-Physical Production System for Industry 4.0
,”
Procedia Cirp
,
61
(
24
), pp.
335
340
.
16.
Leng
,
J.
,
Zhang
,
H.
,
Yan
,
D.
,
Liu
,
Q.
,
Chen
,
X.
, and
Zhang
,
D.
,
2019
, “
Digital Twin-Driven Manufacturing Cyber-Physical System for Parallel Controlling of Smart Workshop
,”
J. Ambient Intell. Humaniz. Comput.
,
10
(
3
), pp.
1155
1166
.
17.
Ritto
,
T.
, and
Rochinha
,
F.
,
2020
, “
Digital Twin, Physics-Based Model, and Machine Learning Applied to Damage Detection in Structures
,”
Mechanical Systems and Signal Processing
,
155
(
2021
).
18.
Badurdeen
,
F.
,
Srivastava
,
S.
, and
Saunders
,
C.
,
2017
, “
Predictive Modeling for Digitally-Enabled, Multi-Criteria Decision Making for Innovative Product Design & Analysis for Total Lifecycle Sustainability
,” DMDII-15-05-08 Quarterly Technical Review Report 4.
19.
Aspinwall
,
D.
,
Dewes
,
R.
, and
Mantle
,
A.
,
2005
, “
The Machining of γ-TiAI Intermetallic Alloys
,”
CIRP Ann.
,
54
(
1
), pp.
99
104
.
20.
Lapin
,
J.
,
2009
, “
TiAl-based Alloys: Present Status and Future Perspectives
,”
Conference Proceedings METAL
, p.
2009
.
21.
Bewlay
,
B.
,
Nag
,
S.
,
Suzuki
,
A.
, and
Weimer
,
M.
,
2016
, “
TiAl Alloys in Commercial Aircraft Engines
,”
Mater. High Temp.
,
33
(
4–5
), pp.
549
559
.
22.
Zhang
,
W.
,
Reddy
,
B.
, and
Deevi
,
S.
,
2001
, “
Physical Properties of TiAl-Base Alloys
,”
Scr. Mater.
,
45
(
6
), pp.
645
651
.
23.
Radkowski
,
G.
, and
Sep
,
J.
,
2014
, “
Surface Quality of a Milled Gamma Titanium Aluminide for Aeronautical Applications
,”
Manag. Prod. Eng. Rev.
,
5
(
2
), pp.
60
65
.
24.
Treloar
,
G. J.
,
1997
, “
Extracting Embodied Energy Paths From Input–Output Tables: Towards an Input–Output-Based Hybrid Energy Analysis Method
,”
Econ. Syst. Res.
,
9
(
4
), pp.
375
391
.
25.
Kirsch
,
B.
,
Effgen
,
C.
,
Büchel
,
M.
, and
Aurich
,
J.
,
2014
, “
Comparison of the Embodied Energy of a Grinding Wheel and an end Mill
,”
Procedia CIRP
,
15
(
21
), pp.
74
79
.
26.
Norgate
,
T.
,
Jahanshahi
,
S.
, and
Rankin
,
W.
,
2007
, “
Assessing the Environmental Impact of Metal Production Processes
,”
J. Cleaner Prod.
,
15
(
8–9
), pp.
838
848
.
You do not currently have access to this content.