Abstract

Precision turning with slow tool servo (STS) plays an increasingly important role in advanced manufacturing nowadays. However, it is difficult to promote machining quality for surfaces with local complex geometric features by the conventional global machining method. Hence, a subregional processing method in STS is proposed. First, the continuous equipotential line is taken to express the local geometric feature. Thus, a potential field is built, where the surface could be divided into subregions. Then, a subregional toolpath with variable feed rates is generated by the field and stitched to ensure the feeding motion stability of X-axis. Finally, the surface is subdivided for variable spindle speed planning, considering the feeding motion stability of Z-axis. It is found that the profile arithmetic average error reduces by 31.58% with the proposed method compared with that with the conventional method and the machining time is shortened by 41.00%. Thus, it is proved that the new processing method effectively promotes machining quality and efficiency.

References

1.
Mou
,
J.
,
1997
, “
A Systematic Approach to Enhance Machine Tool Accuracy for Precision Manufacturing
,”
Int. J. Mach. Tool Manuf.
,
37
(
5
), pp.
669
685
.
2.
Hilpert
,
E.
,
Hartung
,
J.
,
Risse
,
S.
,
Eberhardt
,
R.
, and
Tünnermann
,
A.
,
2018
, “
Precision Manufacturing of a Lightweight Mirror Body Made by Selective Laser Melting
,”
Precis. Eng.
,
53
, pp.
310
317
.
3.
Lee
,
D. E.
,
Hwang
,
I.
,
Valente
,
C. M. O.
,
Oliveira
,
J. F. G.
, and
Dornfeld
,
D. A.
,
2006
, “
Precision Manufacturing Process Monitoring With Acoustic Emission
,”
Int. J. Mach. Tool Manuf.
,
46
(
2
), pp.
176
188
.
4.
Sreejith
,
P. S.
, and
Ngoi
,
B. K. A.
,
2001
, “
Material Removal Mechanisms in Precision Machining of New Materials
,”
Int. J. Mach. Tool Manuf.
,
41
(
12
), pp.
1831
1843
.
5.
Lei
,
S. T.
,
Zhao
,
X.
,
Yu
,
X. M.
,
Hu
,
A. M.
,
Vukelic
,
S.
,
Jun
,
M. B. G.
,
Joe
,
H.
,
Yao
,
Y. L.
, and
Shin
,
Y. C.
,
2020
, “
Ultrafast Laser Applications in Manufacturing Processes: A State-of-the-Art Review
,”
ASME. J. Manuf. Sci. Eng.
,
142
(
3
), p.
031005
.
6.
Jia
,
Z. Y.
,
Zhao
,
X. X.
,
Ma
,
J. W.
,
Chen
,
S. Y.
,
Qin
,
F. Z.
, and
Liu
,
Z.
,
2019
, “
Toolpath Generation in Sub-Regional Processing With Constraint of Constant Scallop-Height at Boundary for Complex Curved Surface
,”
Precis. Eng.
,
55
(
1
), pp.
217
230
.
7.
Ma
,
J. W.
,
Li
,
G. L.
,
Lu
,
X.
,
Qin
,
F. Z.
, and
Qu
,
Z. W.
,
2020
, “
Toolpath Regeneration in Sub-Regional Contour-Parallel Processing Based on Iso-Scallop Method
,”
IEEE ASME Trans. Mech.
,
26
(
2
), pp.
730
740
.
8.
Ma
,
J. W.
,
Lu
,
X.
,
Li
,
G. L.
,
Qu
,
Z. W.
, and
Qin
,
F. Z.
,
2020
, “
Toolpath Topology Design Based on Vector Field of Tool Feeding Direction in Sub-Regional Processing for Complex Curved Surface
,”
J. Manuf. Process.
,
52
, pp.
44
57
.
9.
Cuttino
,
J. F.
,
Miller
,
A. C.
, and
Schinstock
,
D. E.
,
1999
, “
Performance Optimization of a Fast Tool Servo for Single-Point Diamond Turning Machines
,”
IEEE ASME Trans. Mech.
,
4
(
2
), pp.
169
179
.
10.
Kong
,
L. B.
,
Cheung
,
C. F.
,
To
,
S.
,
Wang
,
B.
, and
Ho
,
L. T.
,
2014
, “
A Theoretical and Experimental Investigation of Design and Slow Tool Servo Machining of Freeform Progressive Addition Lenses (PALs) for Optometric Applications
,”
Int. J. Adv. Manuf. Technol.
,
72
(
1
), pp.
33
40
.
11.
Mishraa
,
V.
,
Kumar
,
N.
,
Sharma
,
R.
,
Garg
,
H.
, and
Karara
,
V.
,
2020
, “
Development of Aspheric Lenslet Array by Slow Tool Servo Machining
,”
Mater. Today Proc.
,
24
, pp.
1602
1607
.
12.
Kong
,
L. B.
,
Cheung
,
C. F.
, and
Lee
,
W. B.
,
2016
, “
A Theoretical and Experimental Investigation of Orthogonal Slow Tool Servo Machining of Wavy Microstructured Patterns on Precision Rollers
,”
Precis. Eng.
,
43
, pp.
315
327
.
13.
Dai
,
Y. F.
,
Tie
,
G. P.
,
Yin
,
Z. Q.
, and
Guan
,
C. L.
,
2011
, “
Research on the Tool Alignment Error in Fabrication of Off-Axis Paraboloid Surfaces by Using Slow-Tool-Servo Technique
,”
Int. J. Nanomanuf.
,
7
(
3–4
), pp.
278
288
.
14.
Mishra
,
V.
,
Burada
,
D. R.
,
Pant
,
K. K.
,
Karar
,
V.
,
Jha
,
S.
, and
Khan
,
G. S.
,
2019
, “
Form Error Compensation in the Slow Tool Servo Machining of Freeform Optics
,”
Int. J. Adv. Manuf. Technol.
,
105
(
1
), pp.
1623
1635
.
15.
Kang
,
M.
,
Wang
,
X. S.
,
Yang
,
Y.
, and
Xu
,
Z.
,
2011
, “
Study on the Turing of Toric Spectacle Lens by Use of Slow Tool Servo Method
,”
Appl. Mech. Mater.
,
52–54
, pp.
1526
1531
.
16.
Zhu
,
Z. W.
,
To
,
S.
,
Zhu
,
W. L.
,
Huang
,
P.
, and
Zhou
,
X. Q.
,
2019
, “
Cutting Forces in Fast-/Slow Tool Servo Diamond Turning of Micro-Structured Surfaces
,”
Int. J. Mach. Tool Manuf.
,
136
, pp.
62
75
.
17.
Mukaida
,
M.
, and
Yan
,
J. W.
,
2019
, “
Ductile Machining of Single-Crystal Silicon for Microlens Arrays by Ultraprecision Diamond Turning Using a Slow Tool Servo
,”
Int. J. Mach. Tool Manuf.
,
115
, pp.
2
14
.
18.
Salehi
,
M.
,
Schmitz
,
T. L.
,
Copenhaver
,
R.
,
Haas
,
R.
, and
Ovtcharova
,
J.
,
2018
, “
Probabilistic Sequential Prediction of Cutting Force Using Kienzle Model in Orthogonal Turning Process
,”
ASME. J. Manuf. Sci. Eng.
,
141
(
1
), p.
011009
.
19.
Cao
,
H.
,
Liang
,
N.
, and
Zhang
,
N.
,
2012
, “
HSM Toolpath Generation With Capsule-Based Region Subdivision
,”
Adv. Mater. Res.
,
468
, pp.
2653
2656
.
20.
Wu
,
D.
,
Chen
,
K.
, and
Wang
,
X. K.
,
2009
, “
An Investigation of Practical Application of Variable Spindle Speed Machining to Noncircular Turning Process
,”
Int. J. Adv. Manuf. Technol.
,
44
(
11
), pp.
1094
1105
.
21.
Mishra
,
V.
,
Sabui
,
D.
,
Burada
,
D. R.
,
karar
,
V.
,
Jha
,
S.
, and
Khan
,
G. S.
,
2020
, “
Experimental Investigations on Slow Tool Servo Process Parameters for Freeform Optics Machining
,”
Mater. Manuf. Process.
,
35
(
7
), pp.
797
810
.
22.
Xiang
,
B.
,
Li
,
Y.
,
Xu
,
K.
, and
Yang
,
M.
,
2020
, “
Image Morphology-Based Path Generation for High-Speed Pocketing
,”
ASME. J. Manuf. Sci. Eng.
,
142
(
4
), p.
041005
.
23.
Yin
,
Z. Q.
,
Dai
,
Y. F.
,
Li
,
S. Y.
,
Guan
,
C. L.
, and
Tie
,
G. P.
,
2011
, “
Fabrication of Off-Axis Aspheric Surfaces Using a Slow Tool Servo
,”
Int. J. Mach. Tool Manuf.
,
51
(
5
), pp.
404
410
.
24.
Kang
,
M.
,
Yang
,
J.
,
Wang
,
X. S.
, and
Chen
,
X.
,
2018
, “
Study on the Variational-Difference-Based Design and Slow Tool Servo Turning of Progressive Addition Lenses
,”
Adv. Mech. Eng.
,
10
(
12
), pp.
1
12
.
25.
Wang
,
X. S.
,
Fu
,
X. Q.
,
Li
,
C. L.
, and
Kang
,
M.
,
2015
, “
Tool Path Generation for Slow Tool Servo Turning of Complex Optical Surfaces
,”
Int. J. Adv. Manuf. Technol.
,
79
(
1
), pp.
437
448
.
26.
Chen
,
X.
,
Kang
,
M.
,
Wang
,
X. S.
,
Hassan
,
M.
, and
Yang
,
J.
,
2017
, “
Tool Path Optimal Design for Slow Tool Servo Turning of Complex Optical Surface
,”
Proc. Inst. Mech. Eng. B: J. Eng.
,
231
(
5
), pp.
825
837
.
27.
Yi
,
A. Y.
, and
Li
,
L.
,
2005
, “
Design and Fabrication of a Microlens Array by Use of a Slow Tool Servo
,”
Opt. Lett.
,
30
(
13
), pp.
1707
1709
.
28.
Neo
,
D. W. K.
,
Kumar
,
A. S.
, and
Rahman
,
M.
,
2014
, “
A Novel Surface Analytical Model for Cutting Linearization Error in Fast Tool/Slow Slide Servo Diamond Turning
,”
Precis. Eng.
,
38
(
4
), pp.
849
860
.
29.
Ma
,
J. W.
,
Jia
,
Z. Y.
,
Wang
,
F. J.
,
Wang
,
L.
, and
Xu
,
Q.
,
2015
, “
Sub-Regional Process Method With Variable Parameters for Parts With Rapid Change of Local Geometric Feature
,”
J. Mech. Eng.
,
51
(
11
), pp.
109
115
.
30.
Jia
,
Z. Y.
,
Wang
,
L.
,
Ma
,
J. W.
,
Zhao
,
K.
, and
Liu
,
W.
,
2014
, “
Feed Speed Scheduling Method for Parts With Rapidly Varied Geometric Feature Based on Drive Constraint of NC Machine Tool
,”
Int. J. Mach. Tool Manuf.
,
87
, pp.
73
88
.
31.
Kumazawa
,
G. H.
,
Feng
,
H. Y.
, and
Fard
,
M. J. B.
,
2015
, “
Preferred Feed Direction Field: A New Tool Path Generation Method for Efficient Sculptured Surface Machining
,”
Comput. Aided Des.
,
67–68
, pp.
1
12
.
32.
Zhou
,
C. J.
, and
Chen
,
H. C.
,
2011
, “
The Research of High Speed Machining Technology for Sub-Regional Complex Surfaces Based on Feature
,”
Appl. Mech. Mater.
,
58–60
, pp.
48
53
.
33.
Tuong
,
N. V.
, and
Přemysl
,
P.
,
2010
, “
A Practical Approach for Partitioning Free-Form Surfaces
,”
Int. J. Comput. Integ. Manuf.
,
23
(
11
), pp.
992
1001
.
34.
Ding
,
L.
,
Sun
,
Y.
, and
Xiong
,
Z.
,
2019
, “
Active Chatter Suppression in Turning by Simultaneous Adjustment of Amplitude and Frequency of Spindle Speed Variation
,”
ASME J. Manuf. Sci. Eng.
,
142
(
2
), p.
021004
.
35.
Nguyen
,
D.
,
Lee
,
P.
,
Guo
,
Y.
,
Park
,
K.
, and
Kwon
,
P.
,
2019
, “
Wear Performance Evaluation of Minimum Quantity Lubrication With Exfoliated Graphite Nanoplatelets in Turning Titanium Alloy
,”
ASME J. Manuf. Sci. Eng.
,
141
(
8
), p.
081006
.
36.
Hua
,
Y.
,
Liu
,
Z.
,
Wang
,
B.
, and
Jiang
,
J.
,
2019
, “
Residual Stress Regenerated on Low Plasticity Burnished Inconel 718 Surface After Initial Turning Process
,”
ASME J. Manuf. Sci. Eng.
,
141
(
12
), p.
121004
.
You do not currently have access to this content.