Abstract

This paper presents a numerical model for the simulation of resistance sintering. It involves an electro-thermo-mechanical coupling, where each model is simulated as a continuum with the influence of porosities included through the distribution of relative density, i.e., the ratio of the apparent density to that of the corresponding fully dense bulk material. For the mechanical response, this involves a plasticity model based on a porous formulation. Other material data have to be supplied as a function of relative density and temperature, as, for example, the electrical resistivity. The numerical modeling is compared to experimentally resistance sintered titanium with good agreement in terms of pre-compaction and developed relative density and temperature during the sintering process.

References

1.
Castro
,
R. H. R.
,
2013
, “Overview of Conventional Sintering,”
Sintering
,
R. H. R.
Castro
, and
K.
van Benthem
, eds.,
Springer
,
New York
, pp.
1
16
.
2.
Olevsky
,
E. A.
, and
Dudina
,
D. V.
,
2018
,
Resistance Sintering
,
Springer International Publishing
,
Cham
.
3.
Lagos
,
M. A.
,
Agote
,
I.
,
Schubert
,
T.
,
Weissgaerber
,
T.
,
Gallardo
,
J. M.
,
Montes
,
J. M.
,
Prakash
,
L.
,
Andreouli
,
C.
,
Oikonomou
,
V.
,
Lopez
,
D.
, and
Calero
,
J. A.
,
2017
, “
Development of Electric Resistance Sintering Process for the Fabrication of Hard Metals: Processing, Microstructure and Mechanical Properties
,”
Int. J. Refract. Met. Hard Mater.
,
66
, pp.
88
94
.
4.
Yang
,
Y. F.
, and
Qian
,
M.
,
2015
,
Spark Plasma Sintering and Hot Pressing of Titanium and Titanium Alloys
,
Elsevier Inc.
,
Cambridge, MA
.
5.
Cuevas
,
F. G.
,
Andreouli
,
D.
,
Gallardo
,
J. M.
,
Oikonomou
,
V.
,
Cintas
,
J.
,
Torres
,
Y.
, and
Montes
,
J. M.
,
2019
, “
Ceramic Dies Selection for Electrical Resistance Sintering of Metallic Materials
,”
Ceram. Int.
,
45
(
12
), pp.
14555
14561
.
6.
Forno
,
I.
,
Actis Grande
,
M.
, and
Fais
,
A.
,
2015
, “
On the Application of Electro-Sinter-Forging to the Sintering of High-Karatage Gold Powders
,”
Gold Bull.
,
48
(
3–4
), pp.
127
133
.
7.
Fais
,
A.
,
Leoni
,
M.
, and
Scardi
,
P.
,
2012
, “
Fast Sintering of Nanocrystalline Copper
,”
Metall. Mater. Trans. A
,
43
(
5
), pp.
1517
1521
.
8.
Cuevas
,
F.
,
Gallardo
,
J.
,
Torres
,
Y.
,
Astacio
,
R.
,
Weissgaerber
,
T.
,
Lagos
,
M.
,
Montes
,
J.
, and
Cintas
,
J.
,
2019
, “
Production of Ultrafine Grained Hardmetals by Electrical Resistance Sintering
,”
Metals
,
9
(
2
), p.
159
.
9.
Lagos
,
M. A.
,
Agote
,
I.
,
Leizaola
,
I.
,
Lopez
,
D.
, and
Calero
,
J. A.
,
2020
, “
Fabrication of Chromium Carbide Cermets by Electric Resistance Sintering Process: Processing, Microstructure and Mechanical Properties
,”
Int. J. Refract. Met. Hard Mater.
,
95
, pp.
1
8
.
10.
Montes
,
J. M.
,
Rodríguez
,
J. A.
,
Cuevas
,
F. G.
, and
Cintas
,
J.
,
2011
, “
Consolidation by Electrical Resistance Sintering of Ti Powder
,”
J. Mater. Sci.
,
46
(
15
), pp.
5197
5207
.
11.
Cannella
,
E.
,
Nielsen
,
C. V.
, and
Bay
,
N.
,
2019
, “
Process Investigation and Mechanical Properties of Electro Sinter Forged (ESF) Titanium Discs
,”
Int. J. Adv. Manuf. Technol.
,
104
(
5–8
), pp.
1985
1998
.
12.
Leich
,
L.
,
Röttger
,
A.
,
Theisen
,
W.
, and
Krengel
,
M.
,
2018
, “
Densification of Nanocrystalline NdFeB Magnets Processed by Electro-Discharge Sintering—Microstructure, Magnetic, and Mechanical Properties
,”
J. Magn. Magn. Mater.
,
460
, pp.
454
460
.
13.
Cannella
,
E.
,
Nielsen
,
C. V.
, and
Bay
,
N.
,
2020
, “
Resistance Sintering of NdFeBCo Permanent Magnets and Analysis of Their Properties
,”
CIRP J. Manuf. Sci. Technol.
,
29
(
Part A
), pp.
88
98
.
14.
Di Napoli
,
P.
,
Cagliero
,
R.
, and
Maizza
,
G.
,
2015
, “
Micro-Macro Analysis of Capacitor Discharge Sintering in Copper-Diamond Bead
,”
J. Am. Ceram. Soc.
,
98
(
11
), pp.
3538
3546
.
15.
Maizza
,
G.
, and
Tassinari
,
A.
,
2009
, “
Modelling of Micro/Macro Densification Phenomena of Cu Powder During Capacitor Discharge Sintering
,”
COMSOL Conference
,
Milan, Italy
,
Oct. 14–16
, pp.
1
7
.
16.
McWilliams
,
B.
,
Zavaliangos
,
A.
,
Cho
,
K. C.
, and
Dowding
,
R. J.
,
2006
, “
The Modeling of Electric-Current-Assisted Sintering to Produce Bulk Nanocrystalline Tungsten
,”
JOM
,
58
(
4
), pp.
67
71
.
17.
Zhang
,
Y.
,
Wu
,
L.
,
Guo
,
X.
,
Jung
,
Y. G.
, and
Zhang
,
J.
,
2016
, “
Molecular Dynamics Simulation of Electrical Resistivity in Sintering Process of Nanoparticle Silver Inks
,”
Comput. Mater. Sci.
,
125
, pp.
105
109
.
18.
Wei
,
X.
,
Giuntini
,
D.
,
Maximenko
,
A. L.
,
Haines
,
C. D.
, and
Olevsky
,
E. A.
,
2015
, “
Experimental Investigation of Electric Contact Resistance in Spark Plasma Sintering Tooling Setup
,”
J. Am. Ceram. Soc.
,
98
(
11
), pp.
3553
3560
.
19.
Tiwari
,
D.
,
Basu
,
B.
, and
Biswas
,
K.
,
2009
, “
Simulation of Thermal and Electric Field Evolution During Spark Plasma Sintering
,”
Ceram. Int.
,
35
(
2
), pp.
699
708
.
20.
Braginsky
,
M.
,
Tikare
,
V.
, and
Olevsky
,
E.
,
2005
, “
Numerical Simulation of Solid State Sintering
,”
Int. J. Solids Struct.
,
42
(
2
), pp.
621
636
.
21.
Garcia
,
C.
, and
Olevsky
,
E.
,
2010
, “
Numerical Simulation of Spark Plasma Sintering
,”
Adv. Sci. Technol.
,
63
, pp.
58
61
.
22.
Allen
,
J. B.
, and
Walter
,
C.
,
2012
, “
Numerical Simulation of the Temperature and Stress Field Evolution Applied to the Field Assisted Sintering Technique
,”
ISRN Mater. Sci.
,
2012
, pp.
1
9
.
23.
Nielsen
,
C. V.
,
Zhang
,
W.
,
Perret
,
W.
,
Martins
,
P. A. F.
, and
Bay
,
N.
,
2015
, “
Three-Dimensional Simulations of Resistance Spot Welding
,”
Proc. Inst. Mech. Eng. Part D.
,
229
(
7
), pp.
885
897
.
24.
Nielsen
,
C. V.
,
Zhang
,
W.
,
Martins
,
P. A. F.
, and
Bay
,
N.
,
2015
, “
3D Numerical Simulation of Projection Welding of Square Nuts to Sheets
,”
J. Mater. Process. Technol.
,
215
, pp.
171
180
.
25.
Nielsen
,
C. V.
,
Zhang
,
W.
,
Alves
,
L. M.
,
Bay
,
N.
, and
Martins
,
P. A. F.
,
2013
, “Coupled Finite Element Flow Formulation,”
Modelling of Thermo-Electro-Mechanical Manufacturing Processes With Applications in Metal Forming and Resistance Welding
,
J. P.
Davim
, ed.,
Springer-Verlag
,
London
, pp.
11
36
.
26.
Cannella
,
E.
,
Nielsen
,
C. V.
, and
Bay
,
N.
,
2019
, “
On the Process and Product Fingerprints for Electro Sinter Forging (ESF)
,”
Micromachines
,
10
(
4
), p.
218
.
27.
GoodFellow
,
2017
, “
Titanium Powder (Ti)-Material Information
,” http://www.goodfellow.com/E/Titanium-Powder.html, Accessed March 20, 2017.
28.
Ness Engineering
,
2020
, “
Technical Data
,” http://www.nessengr.com/techdata/metalresis.html, Accessed October 22, 2020.
29.
MatWeb
,
2017
, “
Material Property Data—Titanium Grade 2
,” http://www.matweb.com/search/datasheet.aspx?MatGUID=24293fd5831941ec9fa01dce994973c7, Accessed October 22, 2017.
30.
Montes
,
J. M.
,
Cuevas
,
F. G.
, and
Cintas
,
J.
,
2007
, “
Electrical Resistivity of Metal Powder Aggregates
,”
Metall. Mater. Trans. B
,
38
(
6
), pp.
957
964
.
31.
Montes
,
J.
,
Cuevas
,
F.
,
Ternero
,
F.
,
Astacio
,
R.
,
Caballero
,
E.
, and
Cintas
,
J.
,
2017
, “
A Method to Determine the Electrical Resistance of a Metallic Powder Mass Under Compression
,”
Metals
,
7
(
12
), p.
479
.
32.
Montes
,
J. M.
,
Cuevas
,
F. G.
, and
Cintas
,
J.
,
2011
, “
Electrical Resistivity of a Titanium Powder Mass
,”
Granular Matter
,
13
(
4
), pp.
439
446
.
33.
Weiner
,
L.
,
Chiotti
,
P.
, and
Wilhelm
,
H. A.
,
1952
, “
Temperature Dependence of Electrical Resistivity of Metals
,”
Ames Lab. ISC Tech. Reports, Ames Lab., 12.5
.
34.
Shima
,
S.
, and
Oyane
,
M.
,
1976
, “
Plasticity Theory for Porous Metals
,”
Int. J. Mech. Sci.
,
18
(
6
), pp.
285
291
.
35.
Marques
,
M. J. M. B.
, and
Martins
,
P. A. F.
,
1991
, “
A General Three-Dimensional Finite Element Approach for Porous and Dense Metal-Forming Processes
,”
Proc. Inst. Mech. Eng. Part B
,
205
(
4
), pp.
257
263
.
36.
Alves
,
L. M. M.
,
Martins
,
P. A. F.
, and
Rodrigues
,
J. M. C.
,
2006
, “
A New Yield Function for Porous Materials
,”
J. Mater. Process. Technol.
,
179
(
1–3
), pp.
36
43
.
37.
Montes
,
J. M.
,
Cuevas
,
F. G.
,
Cintas
,
J.
, and
Urban
,
P.
,
2014
, “
A One-Dimensional Model of the Electrical Resistance Sintering Process
,”
Metall. Mater. Trans. A
,
46
(
2
), pp.
963
980
.
You do not currently have access to this content.