Abstract

In design for forming, it is becoming increasingly significant to develop surrogate models of high-fidelity finite element analysis (FEA) simulations of forming processes to achieve effective component feasibility assessment as well as process and component optimizations. However, surrogate models using traditional scalar-based machine learning methods (SBMLMs) fall short on accuracy and generalizability. This is because SBMLMs fail to harness the location information available from the simulations. To overcome this shortcoming, the theoretical feasibility and practical advantages of innovatively applying image-based machine learning methods (IBMLMs) in developing surrogate models of sheet stamp forming simulations are explored in this study. To demonstrate the advantages of IBMLMs, the effect of the location information on both design variables and simulated physical fields is first proposed and analyzed. Based on a sheet steel stamping case study, a Res-SE-U-Net IBMLM surrogate model of stamping simulations is then developed and compared with a baseline multilayer perceptron (MLP) SBMLM surrogate model. The results show that the IBMLM model is advantageous over the MLP SBMLM model in accuracy, generalizability, robustness, and informativeness. This article presents a promising methodology in leveraging IBMLMs as surrogate models to make maximum use of information from stamp forming FEA results. Future prospective studies that are inspired by this article are also discussed.

References

1.
Bathe
,
K.-J.
,
2016
,
Finite Element Procedures
, 2nd ed.,
Pearson Education, Inc, Englewood Cliffs, NJ
.
2.
Li
,
N.
,
Lin
,
J.
,
Dean
,
T. A.
,
Dry
,
D.
, and
Balint
,
D.
,
2014
, “
Materials Modelling for Selective Heating and Press Hardening of Boron Steel Panels With Graded Microstructures
,”
Procedia Eng.
,
81
, pp.
1675
1681
.
3.
Lu
,
J.
,
Tang
,
J.
,
Apley
,
D. W.
,
Zhan
,
Z.
, and
Chen
,
W.
,
2020
, “
A Mode Tracking Method in Modal Metamodeling for Structures With Clustered Eigenvalues
,”
Comput. Methods Appl. Mech. Eng.
,
369
, p.
113174
.
4.
Wang
,
H.
,
Chen
,
L.
, and
Li
,
E.
,
2018
, “
Time Dependent Sheet Metal Forming Optimization by Using Gaussian Process Assisted Firefly Algorithm
,”
Int. J. Mater. Form.
,
11
(
2
), pp.
279
295
.
5.
Gao
,
F.
,
Ren
,
S.
,
Lin
,
C.
,
Bai
,
Y.
, and
Wang
,
W.
,
2018
, “
Metamodel-Based Multi-Objective Reliable Optimization for Front Structure of Electric Vehicle
,”
Automot. Innov.
,
1
(
2
), pp.
131
139
.
6.
Shi
,
Y.
,
Lu
,
Z.
,
Zhou
,
J.
, and
Zio
,
E.
,
2020
, “
A Novel Time-Dependent System Constraint Boundary Sampling Technique for Solving Time-Dependent Reliability-Based Design Optimization Problems
,”
Comput. Methods Appl. Mech. Eng.
,
372
, p.
113342
.
7.
Hart-Rawung
,
T.
,
Buhl
,
J.
, and
Bambach
,
M.
,
2020
, “
A Fast Approach for Optimization of Hot Stamping Based on Machine Learning of Phase Transformation Kinetics
,”
Procedia Manuf.
,
47
, pp.
707
712
.
8.
Kuhn
,
J.
,
Schneider
,
M.
,
Sonnweber-Ribic
,
P.
, and
Böhlke
,
T.
,
2020
, “
Fast Methods for Computing Centroidal Laguerre Tessellations for Prescribed Volume Fractions With Applications to Microstructure Generation of Polycrystalline Materials
,”
Comput. Methods Appl. Mech. Eng.
,
369
, p.
113175
.
9.
Brenner
,
M. P.
,
Eldredge
,
J. D.
, and
Freund
,
J. B.
,
2019
, “
Perspective on Machine Learning for Advancing Fluid Mechanics
,”
Phys. Rev. Fluids
,
4
(
10
), p.
100501
.
10.
Duraisamy
,
K.
,
Iaccarino
,
G.
, and
Xiao
,
H.
,
2019
, “
Turbulence Modeling in the Age of Data
,”
Annu. Rev. Fluid Mech.
,
51
(
1
), pp.
357
377
.
11.
Kim
,
J.
, and
Lee
,
C.
,
2020
, “
Prediction of Turbulent Heat Transfer Using Convolutional Neural Networks
,”
J. Fluid Mech.
,
882
.
12.
Wang
,
J.
,
Das
,
S.
,
Rai
,
R.
, and
Zhou
,
C.
,
2018
, “
Data-Driven Simulation for Fast Prediction of Pull-Up Process in Bottom-Up Stereo-Lithography
,”
Comput.-Aided Des.
,
99
, pp.
29
42
.
13.
Liang
,
L.
,
Liu
,
M.
,
Martin
,
C.
, and
Sun
,
W.
,
2018
, “
A Deep Learning Approach to Estimate Stress Distribution: A Fast and Accurate Surrogate of Finite-Element Analysis
,”
J. R. Soc., Interface
,
15
(
138
), p.
20170844
.
14.
Nie
,
Z.
,
Jiang
,
H.
, and
Kara
,
L. B.
,
2019
, “
Stress Field Prediction in Cantilevered Structures Using Convolutional Neural Networks
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
Aug. 18–21
,
American Society of Mechanical Engineers
, p.
V001T02A011
.
15.
Ren
,
K.
,
Chew
,
Y.
,
Zhang
,
Y. F.
,
Fuh
,
J. Y. H.
, and
Bi
,
G. J.
,
2020
, “
Thermal Field Prediction for Laser Scanning Paths in Laser Aided Additive Manufacturing by Physics-Based Machine Learning
,”
Comput. Methods Appl. Mech. Eng.
,
362
, p.
112734
.
16.
Imani
,
F.
,
Chen
,
R.
,
Diewald
,
E.
,
Reutzel
,
E.
, and
Yang
,
H.
,
2019
, “
Deep Learning of Variant Geometry in Layerwise Imaging Profiles for Additive Manufacturing Quality Control
,”
ASME J. Manuf. Sci. Eng.
,
141
(
11
), p.
111001
.
17.
Huang
,
J.
,
Sun
,
H.
,
Kwok
,
T.-H.
,
Zhou
,
C.
, and
Xu
,
W.
,
2020
, “
Geometric Deep Learning for Shape Correspondence in Mass Customization by Three-Dimensional Printing
,”
ASME J. Manuf. Sci. Eng.
,
142
(
6
), p.
061003
.
18.
Tian
,
Q.
,
Guo
,
S.
,
Melder
,
E.
,
Bian
,
L.
, and
Guo
,
W.
,
2021
, “
Deep Learning-Based Data Fusion Method for In Situ Porosity Detection in Laser-Based Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
143
(
4
), p.
041011
.
19.
Banga
,
S.
,
Gehani
,
H.
,
Bhilare
,
S.
,
Patel
,
S.
, and
Kara
,
L.
,
2018
, “
3d Topology Optimization Using Convolutional Neural Networks
,” arXiv preprint arXiv:1808.07440.
20.
Spruegel
,
T.
,
Schröppel
,
T.
, and
Wartzack
,
S.
,
2017
, “
Generic Approach to Plausibility Checks for Structural Mechanics with Deep Learning
,”
DS 87-1 Proceedings of the 21st International Conference on Engineering Design (ICED 17) Vol 1: Resource Sensitive Design, Design Research Applications and Case Studies
,
Vancouver, Canada
,
Aug. 21–25
, pp.
299
308
.
21.
Diez
,
C.
,
2020
, “
Machine Learning Process to Analyse big Data From Crash Simulations
,”
7th BETA CAE International Conference
,
Thessaloniki, Greece
,
May 30–June 1
.
22.
Kracker
,
D.
,
Garcke
,
J.
,
Schumacher
,
A.
, and
Schwanitz
,
P.
,
2020
, “
Automatic Analysis of Crash Simulations With Dimensionality Reduction Algorithms Such as PCA and t-SNE
,”
16th International LS-DYNA® Users Conference
,
Stuttgart/Detroit
,
May 3–June 2
.
23.
Guo
,
X.
,
Li
,
W.
, and
Iorio
,
F.
,
2016
, “
Convolutional Neural Networks for Steady Flow Approximation
,”
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mcining
,
San Francisco, CA
,
Aug. 13–17
.
24.
Oh
,
S.
,
Jung
,
Y.
,
Kim
,
S.
,
Lee
,
I.
, and
Kang
,
N.
,
2019
, “
Deep Generative Design: Integration of Topology Optimization and Generative Models
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111405
.
25.
Rawat
,
S.
, and
Herman Shen
,
M.-H.
,
2019
, “
A Novel Topology Optimization Approach Using Conditional Deep Learning
,” arXiv preprint arXiv:1901.04859.
26.
Feng
,
H.
, and
Prabhakar
,
P.
,
2020
, “
Difference-Based Deep Learning Framework for Stress Predictions in Heterogeneous Media
,” arXiv preprint arXiv:2007.04898.
27.
Li
,
Y.
,
Wang
,
H.
,
Shuai
,
W.
,
Zhang
,
H.
, and
Peng
,
Y.
,
2019
, “
Image-Based Reconstruction for the Impact Problems by Using DPNNs
,” arXiv preprint arXiv:1905.03229.
28.
Li
,
Y.
,
Wang
,
H.
,
Mo
,
K.
, and
Zeng
,
T.
,
2018
, “
Reconstruction of Simulation-Based Physical Field by Reconstruction Neural Network Method
,” arXiv preprint arXiv:1805.00528.
29.
Pfrommer
,
J.
,
Zimmerling
,
C.
,
Liu
,
J.
,
Kärger
,
L.
,
Henning
,
F.
, and
Beyerer
,
J.
,
2018
, “
Optimisation of Manufacturing Process Parameters Using Deep Neural Networks as Surrogate Models
,”
Procedia CiRP
,
72
, pp.
426
431
.
30.
Zimmerling
,
C.
,
Dörr
,
D.
,
Henning
,
F.
, and
Kärger
,
L.
,
2019
, “
A Machine Learning Assisted Approach for Textile Formability Assessment and Design Improvement of Composite Components
,”
Composites Part A
,
124
, p.
105459
.
31.
Zimmerling
,
C.
,
Trippe
,
D.
,
Fengler
,
B.
, and
Kärger
,
L.
,
2019
, “
An Approach for Rapid Prediction of Textile Draping Results for Variable Composite Component Geometries Using Deep Neural Networks
,”
AIP Conf. Proc.
,
2113
(
1
), p.
020007
.
32.
Zimmerling
,
C.
,
Poppe
,
C.
, and
Kärger
,
L.
,
2019
, “
Virtual Product Development Using Simulation Methods and AI
,”
Lightweight Design worldwide
,
12
(
6
), pp.
12
19
.
33.
Zimmerling
,
C.
,
Poppe
,
C.
, and
Kärger
,
L.
,
2020
, “
Estimating Optimum Process Parameters in Textile Draping of Variable Part Geometries—A Reinforcement Learning Approach
,”
Procedia Manuf.
,
47
, pp.
847
854
.
34.
Islam
,
M. A.
,
Jia
,
S.
, and
Bruce
,
N. D.
,
2020
, “
How Much Position Information Do Convolutional Neural Networks Encode?
,” arXiv preprint arXiv:2001.08248.
35.
Krizhevsky
,
A.
,
Sutskever
,
I.
, and
Hinton
,
G. E.
,
2017
, “
Imagenet Classification With Deep Convolutional Neural Networks
,”
Commun. ACM
,
60
(
6
), pp.
84
90
.
36.
He
,
K.
,
Zhang
,
X.
,
Ren
,
S.
, and
Sun
,
J.
,
2016
, “
Deep Residual Learning for Image Recognition
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Boston, MA
,
June 7–12
, pp.
770
778
.
37.
Faster
,
R. C. N. N.
,
2015
, “
Towards Real-Time Object Detection With Region Proposal Networks
,”
Advances in Neural Information Processing Systems
,
Montreal, Quebec, Canada
,
Dec. 7–12
.
38.
He
,
K.
,
Gkioxari
,
G.
,
Dollár
,
P.
, and
Girshick
,
R.
,
2017
, “
Mask r-cnn
,”
Proceedings of the IEEE International Conference on Computer Vision
,
Honolulu, HI
,
July 21–26
, pp.
2961
2969
.
39.
Ronneberger
,
O.
,
Fischer
,
P.
, and
Brox
,
T.
,
2015
, “
U-net: Convolutional Networks for Biomedical Image Segmentation
,”
International Conference on Medical Image Computing and Computer-Assisted Intervention
,
Munich, Germany
,
Oct. 5–9
, pp.
234
241
.
40.
Thuerey
,
N.
,
Weißenow
,
K.
,
Prantl
,
L.
, and
Hu
,
X.
,
2020
, “
Deep Learning Methods for Reynolds-Averaged Navier–Stokes Simulations of Airfoil Flows
,”
AIAA J.
,
58
(
1
), pp.
25
36
.
41.
Ma
,
H.
,
Hu
,
X.
,
Zhang
,
Y.
,
Thuerey
,
N.
, and
Haidn
,
O. J.
,
2020
, “
A Combined Data-Driven and Physics-Driven Method for Steady Heat Conduction Prediction Using Deep Convolutional Neural Networks
,” arXiv preprint arXiv:2005.08119.
42.
Fotiadis
,
S.
,
Pignatelli
,
E.
,
Valencia
,
M. L.
,
Cantwell
,
C.
,
Storkey
,
A.
, and
Bharath
,
A. A.
,
2020
, “
Comparing Recurrent and Convolutional Neural Networks for Predicting Wave Propagation
,” arXiv preprint arXiv:2002.08981.
43.
Tang
,
M.
,
Liu
,
Y.
, and
Durlofsky
,
L. J.
,
2020
, “
A Deep-Learning-Based Surrogate Model for Data Assimilation in Dynamic Subsurface Flow Problems
,”
J. Comput. Phys.
,
413
, p.
109456
.
44.
Chen
,
J.
,
Viquerat
,
J.
, and
Hachem
,
E.
,
2019
, “
U-net Architectures for Fast Prediction of Incompressible Laminar Flows
,” arXiv preprint arXiv:1910.13532.
45.
Nie
,
Z.
,
Lin
,
T.
,
Jiang
,
H.
, and
Kara
,
L. B.
,
2020
, “
TopologyGAN: Topology Optimization Using Generative Adversarial Networks Based on Physical Fields Over the Initial Domain
,” arXiv preprint arXiv:2003.04685.
46.
Jiang
,
H.
,
Nie
,
Z.
,
Yeo
,
R.
,
Farimani
,
A. B.
, and
Kara
,
L. B.
,
2020
, “
StressGAN: A Generative Deep Learning Model for 2D Stress Distribution Prediction
,”
ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual Online
,
Aug. 17–19
.
47.
Nair
,
V.
, and
Hinton
,
G. E.
,
2010
, “
Rectified Linear Units Improve Restricted Boltzmann Machines
,”
The 27th International Conference on Machine Learning
,
Haifa, Israel
,
June 21–24
.
48.
Kingma
,
D. P.
, and
Ba
,
J.
,
2014
, “
Adam: A Method for Stochastic Optimization
,” arXiv preprint arXiv:1412.6980.
49.
van Beek
,
A.
,
Ghumman
,
U. F.
,
Munshi
,
J.
,
Tao
,
S.
,
Chien
,
T.
,
Balasubramanian
,
G.
,
Plumlee
,
M.
,
Apley
,
D.
, and
Chen
,
W.
,
2020
, “
Scalable Objective-Driven Batch Sampling in Simulation-Based Design for Models With Heteroscedastic Noise
,”
ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual Online
,
Aug. 17–19
.
50.
Marin
,
R.
,
Rampini
,
A.
,
Castellani
,
U.
,
Rodolà
,
E.
,
Ovsjanikov
,
M.
, and
Melzi
,
S.
,
2020
, “
Instant Recovery of Shape From Spectrum via Latent Space Connections
,” arXiv preprint arXiv:2003.06523.
51.
Neural Concept
,
2020
, “
Formula 1: Multiple Connected Components and Long-Range Aerodynamic Correlations
,” https://neuralconcept.com/wp-content/uploads/2020/05/Formula_1_Report-2.pdf
52.
Neural Concept
,
2020
, “
Thermal Modelling on Satellites Panels: 3D Deep Learning on Different Topologies
,” https://neuralconcept.com/wp-content/uploads/2020/05/Satellite_panel_report_NeuralConcept.pdf
You do not currently have access to this content.