Abstract

For the automotive industry, it is important to predict the fracture mode of resistance spot-welded joints. Traditional 4t0.5 (where t is the sheet thickness) criterion for the transition from interfacial fracture (IF) to button pullout fracture (BPF) mode is not applicable for press hardened steel, press-hardened steel (PHS), welds. This study aims to investigate the effect of Al–Si coating and critical heat affected zone (CHAZ) location on the lap-shear fracture mode transition mechanism of Al–Si-coated PHS welds. It was found that in-situ tempering pulse after the welding stage could change the relative location of the CHAZ and weld nugget, which in turn, had a significant effect upon the fracture mode transition. Thus, a new analytical model was built to predict the critical nugget size for Al–Si-coated PHS, wherein the Al–Si coating and the CHAZ location are considered as critical factors for predicting the fracture mode transition of PHS spot welds and are incorporated into this model. A reasonable correlation of the model to experimental data was achieved.

References

1.
Lechler
,
J.
, and
Merklein
,
M.
,
2008
, “
Hot Stamping of Ultra High Strength Steels as a Key Technology for Lightweight Construction
,”
Materials Science and Technology 2008 Conference and Exhibition
,
Pittsburgh, PA
,
Oct. 5–9
, pp.
1698
1709
.
2.
Karbasian
,
H.
, and
Tekkaya A
,
E.
,
2010
, “
A Review on hot Stamping
,”
J. Mater. Process. Technol.
,
210
(
15
), pp.
2103
2118
.
3.
Merklein
,
M.
,
Lechler
,
J.
, and
Stoehr
,
T.
,
2008
, “
Characterization of Tribological and Thermal Properties of Metallic Coatings for Hot Stamping Boron Manganese Steels
,”
Proceedings of the Seventh International Conference on Coatings in Manufacturing Engineering
,
Chalkidiki, Greece
,
Oct. 1–3
, pp.
1
3
.
4.
Ji
,
C. W.
,
Jo
,
I.
,
Lee
,
H.
,
Choi
,
I.-D.
,
do Kim
,
Y.
, and
Park
,
Y.-D.
,
2014
, “
Effects of Surface Coating on Weld Growth of Resistance Spot-Welded Hot-Stamped Boron Steels
,”
J. Mech. Sci. Technol.
,
28
(
11
), pp.
4761
4769
.
5.
Choi
,
H. S.
,
Park
,
G. H.
,
Lim
,
W. S.
, and
Kim
,
B.-M.
,
2011
, “
Evaluation of Weldability for Resistance Spot Welded Single-lap Joint Between GA780DP and Hot-Stamped 22MnB5 Steel Sheets
,”
J. Mech. Sci. Technol.
,
25
(
6
), pp.
1543
1550
.
6.
Sun
,
X.
,
Stephens
,
E. V.
,
Davies
,
R. W.
,
Khaleel
,
M.
, and
Spinella
,
D. J.
,
2004
, “
Effects of Fusion Zone Size on Failure Modes and Static Strength of Aluminum Resistance Spot Welds
,”
Weld. J.
,
83
(
11
), pp.
308s
318s
.
7.
Chao
,
Y. J.
,
2013
, “
Failure Mode of Spot Welds: Interfacial Versus Pullout
,”
Sci. Technol. Weld. Joining
,
8
(
2
), pp.
133
137
.
8.
Boriwal
,
L.
,
Sarviya
,
R. M.
, and
Mahapatra
,
M. M.
,
2017
, “
Failure Modes of Spot Welds in Quasi-Static Tensile-Shear Loading of Coated Steel Sheets
,”
Mater. Today Proc.
,
4
(
2
), pp.
3672
3677
.
9.
Chao
,
Yuh J.
,
2003
, “
Ultimate Strength and Failure Mechanism of Resistance Spot Weld Subjected to Tensile, Shear, or Combined Tensile/Shear Loads
,”
ASME J. Eng. Mater. Technol.
,
125
(
2
), pp.
125
132
.
10.
Pouranvari
,
M.
, and
Marashi
,
S. P. H.
,
2013
, “
Critical Review of Automotive Steels Spot Welding: Process, Structure and Properties
,”
Sci. Technol. Weld. Joining
,
18
(
5
), pp.
361
403
.
11.
Pouranvari
,
M.
, and
Marashi
,
S. P. H.
,
2011
, “
Failure Mode Transition in AHSS Resistance Spot Welds. Part I. Controlling Factors
,”
Mater. Sci. Eng., A
,
528
(
29–30
), pp.
8337
8343
.
12.
Pouranvari
,
M.
,
Marashi
,
S. P. H.
, and
Safanama
,
D. S.
,
2011
, “
Failure Mode Transition in AHSS Resistance Spot Welds. Part II: Experimental Investigation and Model Validation
,”
Mater. Sci. Eng., A
,
528
(
29–30
), pp.
8344
8352
.
13.
ANSI/AWS/SAE/D8.9–97,
1997
, “
Recommended Practices for Test Methods for Evaluating the Resistance Spot Welding Behavior of Automotive Sheet Steel Materials
,”
American Welding Society
.
14.
VandenBossche
,
J.
,
1977
, “
Ultimate Strength and Failure Mode of Spot Welds in High Strength Steels
,”
SAE Paper 770214
.
15.
Smith
,
R. A.
, “
Sizing of Spot Welds by Elastic/Plastic Analysis
,”
Fracture and Fatigue: Elasto-Plasticity, Thin Sheet and Micromechanics Problems, 3rd European Colloquium on Fracture
,
London
,
Pergamon Press
,
Sept. 8–10
, pp.
49
56
.
16.
Mohamadizadeh
,
A.
,
Biro
,
E.
,
Worswick
,
M.
,
Zhou
,
N.
,
Malcolm
,
S.
,
Yau
,
C.
,
Jiao
,
Z.
,
Chan
,
K.
, et al,
2019
, “
Spot Weld Strength Modeling and Processing Maps for Hot-Stamping Steels
,”
Weld. J.
,
98
(
8
), pp.
241
249
.
17.
Mohamadizadeh
,
A.
,
Biro
,
E.
, and
Worswick
,
M.
, “
Shear Band Formation at the Fusion Boundary and Failure Behaviour of Resistance Spot Welds in Ultra-High-Strength hot-Stamped Steel
.
18.
Li
,
Y. B.
,
Li
,
D. L.
,
David
,
S. A.
,
Lim
,
Y. C.
, and
Feng
,
Z.
,
2016
, “
Microstructures of Magnetically Assisted Dual-Phase Steel Resistance Spot Welds
,”
Sci. Technol. Weld Joining
,
21
(
7
), pp.
555
563
.
19.
Sherepenko
,
O.
, and
Jüttner
,
S.
,
2018
, “
Transient Softening at the Fusion Boundary in Resistance Spot Welded Ultra-High Strengths Steel 22MnB5 and its Impact on Fracture Processes
,”
Weld. World
,
63
(
1
), pp.
151
159
.
20.
Chen
,
R.
,
Lou
,
M.
,
Li
,
Y.
, and
Carlson
,
B. E.
,
2019
, “
Improving Weldability of Al-Si Coated Press Hardened Steel Using Stepped Current Pulse Schedule
,”
J. Manuf. Processes
,
48
, pp.
31
43
.
21.
Chen
,
R.
,
Zhang
,
C.
,
Lou
,
M.
,
Li
,
Y.
, and
Carlson
,
B. E.
,
2020
, “
Effect of Al-Si Coating on Weldability of Press-Hardened Steels
,”
J. Mater. Eng. Perform.
,
29
(
1
), pp.
626
636
.
22.
Eller
,
T. K.
,
Greve
,
L.
,
Andres
,
M. T.
,
Medricky
,
M.
,
Hatscher
,
A.
,
Meinders
,
V. T.
, and
van den Boogaard
,
A. H.
,
2014
, “
Plasticity and Fracture Modeling of Quench-Hardenable Boron Steel with Tailored Properties
,”
J. Mater. Process. Technol.
,
214
(
6
), pp.
1211
1227
.
23.
Lu
,
Y.
,
Peer
,
A.
,
Abke
,
T.
,
Kimchi
,
M.
, and
Zhang
,
W.
,
2018
, “
Subcritical Heat Affected Zone Softening in Hot-Stamped Boron Steel During Resistance Spot Welding
,”
Mater. Des.
,
155
, pp.
170
184
.
24.
Ighodaro
,
O. L.
,
Biro
,
E.
, and
Zhou
,
Y. N.
,
2016
, “
Comparative Effects of Al-Si and Galvannealed Coatings on the Properties of Resistance Spot Welded hot Stamping Steel Joints
,”
J. Mater. Process. Technol.
,
236
, pp.
64
72
.
25.
Zhao
,
D.
,
Wang
,
Y.
,
Liang
,
D.
, and
Zhang
,
P.
,
2016
, “
Modeling and Process Analysis of Resistance Spot Welded DP600 Joints Based on Regression Analysis
,”
Mater. Des.
,
110
, pp.
676
684
.
26.
Krajcarz
,
F.
,
Gourgues-Lorenzon
,
A. F.
,
Lucas
,
E.
, and
Pineau
,
A.
,
2013
, “
Fracture Toughness of the Molten Zone of Resistance Spot Welds
,”
Int. J. Fract.
,
181
(
2
), pp.
209
226
.
27.
Pouranvari
,
M.
,
2018
, “
Understanding the Factors Controlling the Interfacial Failure Strength of Advanced High-Strength Steel Resistance Spot Welds: Hardness vs. Fracture Toughness
,”
Sci. Technol. Weld. Joining
,
23
(
6
), pp.
520
526
.
28.
Zhang
,
S.
,
1997
, “
Stress Intensities at Spot Welds
,”
Int. J. Fract.
,
88
(
2
), pp.
167
185
.
29.
Zhang
,
S.
,
1999
, “
Approximate Stress Intensity Factors and Notch Stresses for Common Spot-Welded Specimens
,”
Weld. J.
,
78
, p.
173-s
179s
.
30.
Pouranvari
,
M.
,
2017
, “
Fracture Toughness of Martensitic Stainless Steel Resistance Spot Welds
,”
Mater. Sci. Eng. A
,
680
, pp.
97
107
.
31.
Pouranvari
,
M.
,
Sobhani
,
S.
, and
Goodarzi
,
F.
,
2018
, “
Resistance Spot Welding of MS1200 Martensitic Advanced High Strength Steel: Microstructure-Properties Relationship
,”
J. Manuf. Processes
,
31
, pp.
867
874
.
32.
Lin
,
S.-H.
,
Pan
,
J.
,
Tyan
,
T.
, and
Prasad
,
P.
,
2003
, “
A General Failure Criterion for Spot Welds Under Combined Loading Conditions
,”
Int. J. Solids Struct.
,
40
(
21
), pp.
5539
5564
.
You do not currently have access to this content.