Abstract

Cutting edge radius is a crucial factor affecting surface integrity during metal machining, which determines product performance. However, the exact mechanism of how the cutting edge radius affects machined surface has not yet been understood, especially lacking in situ evidence during the material removal process. In this article, effects of cutting edge radius on surface roughness, subsurface deformation, and work hardening of nickel-based cast superalloy are studied through an in situ imaging approach. Based on continuous high-speed filming and digital imaging correlation (DIC) techniques, detailed chip formation and quantitative subsurface plastic deformation under various cutting edge radii are analyzed, and the formation of built-up edge (BUE) is observed when using a large edge radius. Furthermore, when the cutting edge radius is greater than the uncut chip thickness (h), the thickness of plastic deformation increases dramatically. On the other hand, the machined surface roughness can be improved when the cutting edge radius is between 30% and 60% of h. The sharp cutting tools or the cutting edge radius higher than 60% of h result in a poor surface quality on the machined surface during nickel-based cast superalloy machining. The effects of cutting edge radius on machined surface generation are systematically categorized as cutting with chipping, cutting with significant plowing, and cutting with plowing accompanied by BUE formation.

References

1.
Das
,
N.
,
2010
, “
Advances in Nickel-Based Cast Superalloys
,”
Trans. Indian Inst. Met.
,
63
(
2
), pp.
265
274
.
2.
M’Saoubi
,
R.
,
Axinte
,
D.
,
Soo
,
S. L.
,
Nobel
,
C.
,
Attia
,
H.
,
Kappmeyer
,
G.
,
Engin
,
S.
, and
Sim
,
W. M.
,
2015
, “
High Performance Cutting of Advanced Aerospace Alloys and Composite Materials
,”
CIRP Ann. Manuf. Technol.
,
64
(
2
), pp.
557
580
.
3.
Klocke
,
F.
,
König
,
W.
, and
Gerschwiler
,
K.
,
1996
, “Advanced Machining of Titanium- and Nickel-Based Alloys,”
Advanced Manufacturing Systems and Technology
,
E.
Kuljanic
, ed.,
Springer
,
Vienna
, pp.
7
21
.
4.
Ezugwu
,
E. O.
,
2005
, “
Key Improvements in the Machining of Difficult-to-Cut Aerospace Superalloys
,”
Int. J. Mach. Tools Manuf.
,
45
(
12–13
), pp.
1353
1367
.
5.
Field
,
M.
,
Kahles
,
J. F.
, and
Cammett
,
J. T.
,
1972
, “
Review of Measuring Methods for Surface Integrity
,”
Ann. CIRP
,
21
(
2
), pp.
219
238
.
6.
Ulutan
,
D.
, and
Ozel
,
T.
,
2011
, “
Machining Induced Surface Integrity in Titanium and Nickel Alloys: A Review
,”
Int. J. Mach. Tools Manuf.
,
51
(
3
), pp.
250
280
.
7.
Jawahir
,
I. S.
,
Brinksmeier
,
E.
,
M’Saoubi
,
R.
,
Aspinwall
,
D. K.
,
Outeiro
,
J. C.
,
Meyer
,
D.
,
Umbrello
,
D.
, and
Jayal
,
A. D.
,
2011
, “
Surface Integrity in Material Removal Processes: Recent Advances
,”
CIRP Ann. Manuf. Technol.
,
60
(
2
), pp.
603
626
.
8.
M’Saoubi
,
R.
,
Outeiro
,
J. C.
,
Chandrasekaran
,
H.
,
Dillon Jr.
,
O. W.
, and
Jawahir
,
I. S.
,
2008
, “
A Review of Surface Integrity in Machining and Its Impact on Functional Performance and Life of Machined Products
,”
Int. J. Sustain. Manuf.
,
1
(
1–2
), pp.
203
236
.
9.
Wang
,
B.
,
Liu
,
Z.
,
Cai
,
Y.
,
Luo
,
X.
,
Ma
,
H.
,
Song
,
Q.
, and
Xiong
,
Z.
,
2021
, “
Advancements in Material Removal Mechanism and Surface Integrity of High Speed Metal Cutting: A Review
,”
Int. J. Mach. Tools Manuf.
,
166
, p.
103744
.
10.
Mo
,
S. P.
,
Axinte
,
D. A.
,
Hyde
,
T. H.
, and
Gindy
,
N. N. Z.
,
2005
, “
An Example of Selection of the Cutting Conditions in Broaching of Heat-Resistant Alloys Based on Cutting Forces, Surface Roughness and Tool Wear
,”
J. Mater. Process. Technol.
,
160
(
3
), pp.
382
389
.
11.
Sharman
,
A. R. C.
,
Hughes
,
J. I.
, and
Ridgway
,
K.
,
2004
, “
Workpiece Surface Integrity and Tool Life Issues When Turning Inconel 718 Nickel Based Superalloy
,”
Mach. Sci. Technol.
,
8
(
3
), pp.
399
414
.
12.
Umbrello
,
D.
,
2013
, “
Investigation of Surface Integrity in Dry Machining of Inconel 718
,”
Int. J. Adv. Manuf. Technol.
,
69
(
9–12
), pp.
2183
2190
.
13.
Dutilh
,
V.
,
Dessein
,
G.
,
Alexis
,
J.
, and
Perrin
,
G.
,
2010
, “
Links Between Machining Parameters and Surface Integrity in Drilling Ni-Superalloy
,”
Adv. Mater. Res.
,
112
, pp.
171
178
.
14.
Shen
,
N.
,
Ding
,
H.
,
Pu
,
Z.
,
Jawahir
,
I. S.
, and
Jia
,
T.
,
2017
, “
Enhanced Surface Integrity From Cryogenic Machining of AZ31B Mg Alloy: A Physics-Based Analysis With Microstructure Prediction
,”
ASME J. Manuf. Sci. Eng.
,
139
(
6
), p.
061012
.
15.
Ding
,
H.
,
Shen
,
N.
, and
Shin
,
Y. C.
,
2011
, “
Modeling of Grain Refinement in Aluminum and Copper Subjected to Cutting
,”
Comput. Mater. Sci.
,
50
(
10
), pp.
3016
3025
.
16.
Xu
,
X.
,
Zhang
,
J.
,
Liu
,
H.
,
He
,
Y.
, and
Zhao
,
W.
,
2019
, “
Grain Refinement Mechanism Under High Strain-Rate Deformation in Machined Surface During High Speed Machining Ti6Al4V
,”
Mater. Sci. Eng. A
,
752
, pp.
167
179
.
17.
Denkena
,
B.
, and
Biermann
,
D.
,
2014
, “
Cutting Edge Geometries
,”
CIRP Ann. Manuf. Technol.
,
63
(
2
), pp.
631
653
.
18.
Zhuang
,
K.
,
Fu
,
C.
,
Weng
,
J.
, and
Hu
,
C.
,
2021
, “
Cutting Edge Microgeometries in Metal Cutting: A Review
,”
Int. J. Adv. Manuf. Technol.
,
116
(
7–8
), pp.
2045
2092
.
19.
Thiele
,
J. D.
, and
Melkote
,
S. N.
,
1999
, “
Effect of Cutting Edge Geometry and Workpiece Hardness on Surface Generation in the Finish Hard Turning of AISI 52100 Steel
,”
J. Mater. Process. Technol.
,
94
(
2
), pp.
216
226
.
20.
Özel
,
T.
,
Hsu
,
T. K.
, and
Zeren
,
E.
,
2005
, “
Effects of Cutting Edge Geometry, Workpiece Hardness, Feed Rate and Cutting Speed on Surface Roughness and Forces in Finish Turning of Hardened AISI H13 Steel
,”
Int. J. Adv. Manuf. Technol.
,
25
(
3–4
), pp.
262
269
.
21.
Maiss
,
O.
,
Grove
,
T.
, and
Denkena
,
B.
,
2017
, “
Influence of Asymmetric Cutting Edge Roundings on Surface Topography
,”
Prod. Eng.
,
11
(
4–5
), pp.
383
388
.
22.
Wyen
,
C. F.
,
Jaeger
,
D.
, and
Wegener
,
K.
,
2013
, “
Influence of Cutting Edge Radius on Surface Integrity and Burr Formation in Milling Titanium
,”
Int. J. Adv. Manuf. Technol.
,
67
(
1–4
), pp.
589
599
.
23.
Zhao
,
T.
,
Agmell
,
M.
,
Persson
,
J.
,
Bushlya
,
V.
,
Ståhl
,
J. E.
, and
Zhou
,
J. M.
,
2017
, “
Correlation Between Edge Radius of the cBN Cutting Tool and Surface Quality in Hard Turning
,”
J. Superhard Mater.
,
39
(
4
), pp.
251
258
.
24.
Arisoy
,
Y. M.
,
Guo
,
C.
,
Kaftanoʇlu
,
B.
, and
Özel
,
T.
,
2016
, “
Investigations on Microstructural Changes in Machining of Inconel 100 Alloy Using Face Turning Experiments and 3D Finite Element Simulations
,”
Int. J. Mech. Sci.
,
107
, pp.
80
92
.
25.
Li
,
B.
,
Zhang
,
S.
,
Yan
,
Z.
, and
Jiang
,
D.
,
2018
, “
Influence of Edge Hone Radius on Cutting Forces, Surface Integrity, and Surface Oxidation in Hard Milling of AISI H13 Steel
,”
Int. J. Adv. Manuf. Technol.
,
95
(
1–4
), pp.
1153
1164
.
26.
Nie
,
G.-C.
,
Zhang
,
K.
,
Outeiro
,
J.
,
Caruso
,
S.
,
Umbrello
,
D.
,
Ding
,
H.
, and
Zhang
,
X.-M.
,
2020
, “
Plastic Strain Threshold Determination for White Layer Formation in Hard Turning of AISI 52100 Steel Using Micro-Grid Technique and Finite Element Simulations
,”
ASME J. Manuf. Sci. Eng.
,
142
(
3
), p.
034501
.
27.
Brown
,
M.
,
M’Saoubi
,
R.
,
Crawforth
,
P.
,
Mantle
,
A.
,
McGourlay
,
J.
, and
Ghadbeigi
,
H.
,
2022
, “
On Deformation Characterisation of Machined Surfaces and Machining-Induced White Layers in a Milled Titanium Alloy
,”
J. Mater. Process. Technol.
,
299
, p.
117378
.
28.
Nie
,
G.-C.
,
Yang
,
Z.-Y.
,
Zhang
,
D.
,
Zhang
,
X.-M.
,
Outeiro
,
J.
, and
Ding
,
H.
,
2022
, “
Dynamics of Chip Formation During the Cutting Process Using Imaging Techniques: A Review
,”
Int. J. Mech. Syst. Dyn.
,
2
(
1
), pp.
27
49
.
29.
Guo
,
Y.
,
Compton
,
W. D.
, and
Chandrasekar
,
S.
,
2015
, “
“In Situ Analysis of Flow Dynamics and Deformation Fields in Cutting and Sliding of Metals
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
471
(
2178
), p.
20150194
.
30.
Outeiro
,
J. C.
,
Campocasso
,
S.
,
Denguir
,
L. A.
,
Fromentin
,
G.
,
Vignal
,
V.
, and
Poulachon
,
G.
,
2015
, “
Experimental and Numerical Assessment of Subsurface Plastic Deformation Induced by OFHC Copper Machining
,”
CIRP Ann. Manuf. Technol.
,
64
(
1
), pp.
53
56
.
31.
Zhang
,
D.
,
Zhang
,
X. M.
,
Leopold
,
J.
, and
Ding
,
H.
,
2017
,
“Subsurface Deformation Generated by Orthogonal Cutting: Analytical Modeling and Experimental Verification
,”
ASME J. Manuf. Sci. Eng. Trans.
,
139
(
9
), p.
094502
.
32.
Bergs
,
T.
,
Abouridouane
,
M.
,
Meurer
,
M.
, and
Peng
,
B.
,
2021
, “
Digital Image Correlation Analysis and Modelling of the Strain Rate in Metal Cutting
,”
CIRP Ann.
,
70
(
1
), pp.
45
48
.
33.
Zhang
,
D.
,
Meurer
,
M.
,
Zhang
,
X.-M.
,
Bergs
,
T.
, and
Ding
,
H.
,
2021
, “
Understanding Kinematics of the Orthogonal Cutting Using Digital Image Correlation—Measurement and Analysis
,”
ASME J. Manuf. Sci. Eng.
,
144
(
3
), p.
031008
.
34.
Zhang
,
D.
,
Zhang
,
X. M.
,
Nie
,
G. C.
,
Yang
,
Z. Y.
, and
Ding
,
H.
,
2021
, “
Characterization of Material Strain and Thermal Softening Effects in the Cutting Process
,”
Int. J. Mach. Tools Manuf.
,
160
, p.
103672
.
35.
Yang
,
Z.-Y.
,
Zhang
,
X.-M.
,
Nie
,
G.-C.
,
Zhang
,
D.
, and
Ding
,
H.
,
2021
, “
A Comprehensive Experiment-Based Approach to Generate Stress Field and Slip Lines in Cutting Process
,”
ASME J. Manuf. Sci. Eng.
,
143
(
7
), p.
071014
.
36.
Zhang
,
D.
,
Zhang
,
X. M.
,
Nie
,
G. C.
,
Yang
,
Z. Y.
, and
Ding
,
H.
,
2021
, “
In Situ Imaging Based Thermo-Mechanical Analysis of Built-Up Edge in Cutting Process
,”
J. Manuf. Process.
,
71
, pp.
450
460
.
37.
Denkena
,
B.
,
De León
,
L.
,
Bassett
,
E.
, and
Rehe
,
M.
,
2010
, “
Cutting Edge Preparation by Means of Abrasive Brushing
,”
Key Eng. Mater.
,
438
, pp.
1
7
.
38.
Blaber
,
J.
,
Adair
,
B.
, and
Antoniou
,
A.
,
2015
, “
Ncorr: Open-Source 2D Digital Image Correlation Matlab Software
,”
Exp. Mech.
,
55
(
6
), pp.
1105
1122
.
39.
de Souza Neto
,
E. A.
,
Peri
,
D.
, and
Owen
,
D. R. J.
,
2008
,
Computational Methods for Plasticity: Theory and Applications
,
John Wiley & Sons, Ltd
,
Singapore
, pp.
191
263
.
40.
Lee
,
Y. L.
,
Barkey
,
M. E.
, and
Kang
,
Hong-Tae
,
2012
,
Metal Fatigue Analysis Handbook
,
Elsevier
,
Amsterdam
, pp.
299
331
.
41.
Sela
,
A.
,
Ortiz-de-Zarate
,
G.
,
Soler
,
D.
,
Aristimuño
,
P.
,
Soriano
,
D.
,
Germain
,
G.
,
Ducobu
,
F.
, and
Arrazola
,
P. J.
,
2020
, “
Surface Drag Analysis After Ti-6Al-4V Orthogonal Cutting Using Grid Distortion
,”
Procedia CIRP
,
87
, pp.
372
377
.
42.
Astakhov
,
V. P.
, and
Shvets
,
S.
,
2004
, “
The Assessment of Plastic Deformation in Metal Cutting
,”
J. Mater. Process. Technol.
,
146
(
2
), pp.
193
202
.
43.
Guo
,
Y.
,
M’Saoubi
,
R.
, and
Chandrasekar
,
S.
,
2011
, “
Control of Deformation Levels on Machined Surfaces
,”
CIRP Ann.
,
60
(
1
), pp.
137
140
.
44.
M’Saoubi
,
R.
,
Axinte
,
D.
,
Herbert
,
C.
,
Hardy
,
M.
, and
Salmon
,
P.
,
2014
, “
Surface Integrity of Nickel-Based Alloys Subjected to Severe Plastic Deformation by Abusive Drilling
,”
CIRP Ann. Manuf. Technol.
,
63
(
1
), pp.
61
64
.
45.
Thakur
,
A.
, and
Gangopadhyay
,
S.
,
2016
, “
State-of-the-Art in Surface Integrity in Machining of Nickel-Based Super Alloys
,”
Int. J. Mach. Tools Manuf.
,
100
, pp.
25
54
.
46.
Wyen
,
C. F.
, and
Wegener
,
K.
,
2010
, “
Influence of Cutting Edge Radius on Cutting Forces in Machining Titanium
,”
CIRP Ann. Manuf. Technol.
,
59
(
1
), pp.
93
96
.
47.
Outeiro
,
J. C.
,
2007
, “
Influence of Tool Sharpness on the Thermal and Mechanical Phenomena Generated During Machining Operations
,”
Int. J. Mach. Mach. Mater.
,
2
(
3–4
), pp.
413
432
.
48.
Childs
,
T. H. C.
,
2013
, “
Ductile Shear Failure Damage Modelling and Predicting Built-Up Edge in Steel Machining
,”
J. Mater. Process. Technol.
,
213
(
11
), pp.
1954
1969
.
49.
Oliaei
,
S. N. B.
, and
Karpat
,
Y.
,
2016
, “
Investigating the Influence of Built-Up Edge on Forces and Surface Roughness in Micro Scale Orthogonal Machining of Titanium Alloy Ti6Al4V
,”
J. Mater. Process. Technol.
,
235
, pp.
28
40
.
You do not currently have access to this content.