Abstract

Welding of dissimilar materials is critical in industries where mixed materials with high strength-to-weight ratios are urgently needed. Friction element welding (FEW) is a promising solution, with the ability to join high strength materials for a wide range of thicknesses with low input energy and a short processing time. However, the temperature evolution and the influence of different processing parameters remain unclear. To bridge this knowledge gap, this work develops a coupled thermal–mechanical finite element model to study the FEW process. The simulation results agree well with the experimental measurements of material deformation and transient temperature evolution. It is found that the friction element’s rotational speed has the greatest impact on friction heat generation, followed by the processing times for different steps. The aluminum layer is heated during the penetration and cleaning steps, thus a lower rotational speed during the penetration step can help prevent the aluminum layer from undesired overheating. The steel layer and the friction element are mainly heated during the cleaning and welding steps. The strong heating, potentially melting, will be beneficial to the friction element’s plastic deformation and bond formation. To enhance the heating of the steel layer and the friction element, faster rotational speeds or longer processing periods could be employed during the cleaning and welding steps. The results by this study establish the relationship between processing conditions and the temperature evolution of different parts, which will guide the design and optimization of the FEW technique for various applications.

References

1.
Wang
,
P.
,
Chen
,
X.
,
Pan
,
Q.
,
Madigan
,
B.
, and
Long
,
J.
,
2016
, “
Laser Welding Dissimilar Materials of Aluminum to Steel: An Overview
,”
Int. J. Adv. Manuf. Technol.
,
87
(
9–12
), pp.
3081
3090
.
2.
Li
,
D.
,
Chrysanthou
,
A.
,
Patel
,
I.
, and
Williams
,
G.
,
2017
, “
Self-Piercing Riveting—A Review
,”
Int. J. Adv. Manuf. Technol.
,
92
(
5–8
), pp.
1777
1824
.
3.
Li
,
Y.
,
Wei
,
Z.
,
Wang
,
Z.
, and
Li
,
Y.
,
2013
, “
Friction Self-Piercing Riveting of Aluminum Alloy AA6061-T6 to Magnesium Alloy AZ31B
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061007
.
4.
Skovron
,
J.
,
Mears
,
L.
,
Ulutan
,
D.
,
Detwiler
,
D.
,
Paolini
,
D.
,
Baeumler
,
B.
, and
Claus
,
L.
,
2014
, “
Characterization of Flow Drill Screwdriving Process Parameters on Joint Quality
,”
SAE Int. J. Mater. Manuf.
,
8
(
1
), pp.
35
44
.
5.
Mucha
,
J.
,
2017
, “
Clinching Technology in the Automotive Industry
,”
Autom. Arch.
,
76
(
2
), pp.
75
94
.
6.
Meschut
,
G.
,
Hahn
,
O.
,
Janzen
,
V.
, and
Olfermann
,
T.
,
2014
, “
Innovative Joining Technologies for Multi-Material Structures
,”
Weld. World
,
58
(
1
), pp.
65
75
.
7.
European Aluminium
,
2015
, “
EAA Aluminium Automotive Manual—Joining
,”
Alum. Autom. Man.
, pp.
1
31
[Online], https://www.european-aluminium.eu/resource-hub/aluminium-automotive-manual/
8.
Mandal
,
S.
,
Rice
,
J.
, and
Elmustafa
,
A. A.
,
2008
, “
Experimental and Numerical Investigation of the Plunge Stage in Friction Stir Welding
,”
J. Mater. Process. Technol.
,
203
(
1–3
), pp.
411
419
.
9.
Assidi
,
M.
,
Fourment
,
L.
,
Guerdoux
,
S.
, and
Nelson
,
T.
,
2010
, “
Friction Model for Friction Stir Welding Process Simulation: Calibrations From Welding Experiments
,”
Int. J. Mach. Tools Manuf.
,
50
(
2
), pp.
143
155
.
10.
D’Urso
,
G.
, and
Giardini
,
C.
,
2016
, “
FEM Model for the Thermo-Mechanical Characterization of Friction Stir Spot Welded Joints
,”
Int. J. Mater. Form.
,
9
(
2
), pp.
149
160
.
11.
Jedrasiak
,
P.
,
Shercliff
,
H. R.
,
Reilly
,
A.
,
McShane
,
G. J.
,
Chen
,
Y. C.
,
Wang
,
L.
,
Robson
,
J.
, and
Prangnell
,
P.
,
2016
, “
Thermal Modeling of Al-Al and Al-Steel Friction Stir Spot Welding
,”
J. Mater. Eng. Perform.
,
25
(
9
), pp.
4089
4098
.
12.
Su
,
P.
,
Gerlich
,
A.
,
North
,
T. H.
, and
Bendzsak
,
G. J.
,
2007
, “
Intermixing in Dissimilar Friction Stir Spot Welds
,”
Metall. Mater. Trans. A
,
38
(
3
), pp.
584
595
.
13.
Khosa
,
S. U.
,
Weinberger
,
T.
, and
Enzinger
,
N.
,
2010
, “
Thermo-Mechanical Investigations During Friction Stir Spot Welding (FSSW) of AA6082-T6
,”
Weld. World
,
54
(
5–6
), pp.
R134
R146
.
14.
Gao
,
Z.
,
Krumphals
,
F.
,
Sherstnev
,
P.
,
Enzinger
,
N.
,
Niu
,
J. T.
, and
Sommitsch
,
C.
,
2012
, “
Analysis of Plastic Flow During Friction Stir Spot Welding Using Finite Element Modelling
,”
Key Eng. Mater.
,
504–506
(
4
), pp.
419
424
.
15.
Al-Badour
,
F.
,
Merah
,
N.
,
Shuaib
,
A.
, and
Bazoune
,
A.
,
2013
, “
Coupled Eulerian Lagrangian Finite Element Modeling of Friction Stir Welding Processes
,”
J. Mater. Process. Technol.
,
213
(
8
), pp.
1433
1439
.
16.
Sanjeev
,
N. K.
, and
Ravikiran
,
B.
,
2015
, “
Application of Coupled Eulerian Lagrangian Approach in Finite Element Simulation of Friction Stir Welding
,”
SIMULIA Community Conference
,
Berlin, Germany
,
May 18–21
, pp.
1062
1079
.
17.
Cao
,
J. Y.
,
Wang
,
M.
,
Kong
,
L.
,
Yin
,
Y. H.
, and
Guo
,
L. J.
,
2017
, “
Numerical Modeling and Experimental Investigation of Material Flow in Friction Spot Welding of Al 6061-T6
,”
Int. J. Adv. Manuf. Technol.
,
89
(
5–8
), pp.
2129
2139
.
18.
Tartakovsky
,
A.
,
Grant
,
G.
,
Sun
,
X.
, and
Khaleel
,
M.
,
2006
, “Modeling of Friction Stir Welding (FSW) Process With Smooth Particle Hydrodynamics (SPH),” SAE Technical Paper.
19.
Hirasawa
,
S.
,
Badarinarayan
,
H.
,
Okamoto
,
K.
, and
Tomimura
,
T.
,
2008
, “
Analysis of Temperature and Plastic Flow During Friction Stir Spot Welding Using Particle Method With Elastic-Plastic Model
,”
ASME International Mechanical Engineering Congress and Exposition
,
Boston, MA
,
Oct. 31–Nov. 6
, pp.
1675
1682
.
20.
Pan
,
W.
,
Li
,
D.
,
Tartakovsky
,
A. M.
,
Ahzi
,
S.
,
Khraisheh
,
M.
, and
Khaleel
,
M.
,
2013
, “
A New Smoothed Particle Hydrodynamics Non-Newtonian Model for Friction Stir Welding : Process Modeling and Simulation of Microstructure Evolution in a Magnesium Alloy
,”
Int. J. Plast.
,
48
, pp.
189
204
.
21.
Pirondi
,
A.
, and
Moroni
,
F.
,
2009
, “
Clinch-Bonded and Rivet-Bonded Hybrid Joints: Application of Damage Models for Simulation of Forming and Failure
,”
J. Adhes. Sci. Technol.
,
23
(
10–11
), pp.
1547
1574
.
22.
Bouchard
,
P. O.
,
Laurent
,
T.
, and
Tollier
,
L.
,
2008
, “
Numerical Modeling of Self-Pierce Riveting-From Riveting Process Modeling Down to Structural Analysis
,”
J. Mater. Process. Technol.
,
202
(
1–3
), pp.
290
300
.
23.
Grujicic
,
M.
,
Snipes
,
J. S.
,
Ramaswami
,
S.
, and
Abu-Farha
,
F.
,
2014
, “
Self-Piercing Riveting Process and Joint Modeling and Simulations
,”
Solids Struct.
,
3
(
2006
), pp.
20
29
.
24.
Grujicic
,
M.
,
Snipes
,
J. S.
, and
Ramaswami
,
S.
,
2017
, “
Process Modeling, Joint Virtual Testing and Construction of Joint Connectors for Mechanical Fastening by Flow-Drilling Screws
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
,
231
(
6
), pp.
1048
1061
.
25.
Ma
,
Y.
,
Li
,
Y.
,
Hu
,
W.
,
Lou
,
M.
, and
Lin
,
Z.
,
2016
, “
Modeling of Friction Self-Piercing Riveting of Aluminum to Magnesium
,”
ASME J. Manuf. Sci. Eng.
,
138
(
6
), p.
061007
.
26.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1983
, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
Proceedings 7th International Symposium on Ballistics
,
The Hague, The Netherlands
,
Apr. 19–21
, Vol. 547, pp.
541
547
.
27.
Guo
,
Y. B.
,
2003
, “
An Integral Method to Determine the Mechanical Behavior of Materials in Metal Cutting
,”
J. Mater. Process. Technol.
,
142
(
1
), pp.
72
81
.
28.
Hernández
,
C. A.
,
Ferrer
,
V. H.
,
Mancilla
,
J. E.
, and
Martínez
,
L. C.
,
2017
, “
Three-Dimensional Numerical Modeling of the Friction Stir Welding of Dissimilar Steels
,”
Int. J. Adv. Manuf. Technol.
,
93
(
5–8
), pp.
1567
1581
.
29.
Nassiri
,
A.
, and
Kinsey
,
B.
,
2016
, “
Numerical Studies on High-Velocity Impact Welding : Smoothed Particle Hydrodynamics (SPH) and Arbitrary Lagrangian–Eulerian (ALE)
,”
J. Manuf. Process.
,
24
(
2
), pp.
376
381
.
30.
Alcaraz
,
J.
,
Lopez de Lacalle
,
L. N.
, and
Lorenzo
,
I.
,
2003
, “
Thermomechanical Analysis of a Chip Machining Process
,”
ABAQUS Users’ Conference
,
Munich, Germany
,
June 4–6
, pp.
1
10
.
31.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1985
, “
Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures
,”
Eng. Fract. Mech.
,
21
(
1
), pp.
31
48
.
32.
Denguir
,
L. A.
,
Outeiro
,
J. C.
,
Rech
,
J.
,
Fromentin
,
G.
,
Vignal
,
V.
, and
Besnard
,
R.
,
2017
, “
Friction Model for Tool/Work Material Contact Applied to Surface Integrity Prediction in Orthogonal Cutting Simulation
,”
16th CIRP Conference on Modelling of Machining Operations Friction
,
Cluny, France
,
June 15–16
, pp.
578
583
.
33.
Maalekian
,
M.
,
2007
, “
Friction Welding—Critical Assessment of Literature
,”
Sci. Technol. Weld. Join.
,
12
(
8
), pp.
738
759
.
34.
Hammelmuller
,
F.
,
Zehetner
,
C.
,
Hammelmüller
,
F.
, and
Zehetner
,
C.
,
2015
, “
Increasing Numerical Efficiency in Coupled Eulerian–Lagrangian Metal Forming Simulations
,”
XIII International Conference on Computational Plasticity. Fundamentals and Applications
,
Barcelona, Spain
,
Sept. 1–3
, pp.
727
733
.
35.
Ansari
,
M. A.
,
Samanta
,
A.
,
Behnagh
,
R. A.
, and
Ding
,
H.
,
2019
, “
An Efficient Coupled Eulerian–Lagrangian Finite Element Model for Friction Stir Processing
,”
Int. J. Adv. Manuf. Technol.
,
101
(
5–8
), pp.
1495
1508
.
36.
Jung
,
D. W.
,
1998
, “
Study of Dynamic Explicit Analysis in Sheet Metal Forming Processes Using Faster Punch Velocity and Mass Scaling Scheme
,”
J. Mater. Eng. Perform.
,
7
(
4
), pp.
479
490
.
37.
Heinze
,
T.
,
Jansen
,
G.
,
Galvan
,
B.
, and
Miller
,
S. A.
,
2016
, “
Systematic Study of the Effects of Mass and Time Scaling Techniques Applied in Numerical Rock Mechanics Simulations
,”
Tectonophysics
,
684
,
Special Issue on GeoMod
, pp.
4
11
.
38.
Albrifkani
,
S.
, and
Wang
,
Y. C.
,
2016
, “
Explicit Modelling of Large Deflection Behaviour of Restrained Reinforced Concrete Beams in Fire
,”
Eng. Struct.
,
121
, pp.
97
119
.
39.
Liu
,
J.
,
Bai
,
Y.
, and
Xu
,
C.
,
2014
, “
Evaluation of Ductile Fracture Models in Finite Element Simulation of Metal Cutting Processes
,”
ASME J. Manuf. Sci. Eng.
,
136
(
1
), p.
011010
.
40.
Ajri
,
A.
, and
Shin
,
Y. C.
,
2017
, “
Investigation on the Effects of Process Parameters on Defect Formation in Friction Stir Welded Samples Via Predictive Numerical Modeling and Experiments
,”
ASME J. Manuf. Sci. Eng.
,
139
, p.
111009
.
41.
Absar
,
S.
,
Ruszkiewicz
,
B. J.
,
Skovron
,
J. D.
,
Mears
,
L.
,
Abke
,
T.
,
Zhao
,
X.
, and
Choi
,
H.
,
2018
, “
Temperature Measurement in Friction Element Welding Process With Micro Thin Film Thermocouples
,”
Procedia Manuf.
,
26
, pp.
485
494
.
You do not currently have access to this content.