Abstract

During metal milling, top burrs will inevitably appear on the edge of the workpiece, which seriously reduces the edge quality and assembly accuracy of the workpiece, thereby reducing the service performance of the product. This study innovatively proposes an ice boundary constraint (IBC) method to avoid top burrs formation during cutting. First, the formation mechanism of the top burrs is analyzed, and the principle of IBC is interpreted. Then, an analytical model is established to realize the cutting analysis, obtain the stress distribution during cutting, and explore the plastic deformation process of the workpiece edge, thus revealing top burrs suppression mechanism and predicting top burrs height. Afterwards, based on the proposed analytical model, finite element method (FEM) is used to simulate the stress distribution at the top edge to verify the stress analysis results of the analytical model. Finally, the effectiveness of IBC method and the prediction accuracy of the analytical model are verified by aluminum alloy 2024 (AA2024) milling experiments. The experimental results show that IBC method can reduce the top burrs height by 54.62% on average, and the percentage of average prediction error of the analytical model is limited to 16.66%. Moreover, the milling experiments of carbon steel and aluminum alloy 6061 (AA6061) are carried out under the same process parameters, and the results show that IBC method can realize the suppression of top burrs of different materials. This study can provide valuable theoretical and practical reference for the minimization of burrs formation during cutting.

References

1.
Niknam
,
S. A.
,
Davoodi
,
B.
,
Davim
,
J. P.
, and
Songmene
,
V.
,
2018
, “
Mechanical Deburring and Edge-Finishing Processes for Aluminum Parts—A Review
,”
Int. J. Adv. Manuf. Technol.
,
95
(
1
), pp.
1101
1125
.
2.
Niknam
,
S. A.
, and
Songmene
,
V.
,
2015
, “
Milling Burr Formation, Modeling and Control: A Review
,”
Proc. Inst. Mech. Eng. Part B-J. Eng. Manuf.
,
229
(
6
), pp.
893
909
.
3.
Veiga
,
C.
,
Davim
,
J. P.
, and
Loureiro
,
A. J. R.
,
2013
, “
Review on Machinability of Titanium Alloys: The Process Perspective
,”
Rev. Adv. Mater. Sci.
,
34
(
2
), pp.
148
164
.
4.
Aurich
,
J. C.
,
Dornfeld
,
D.
,
Arrazola
,
P. J.
,
Franke
,
V.
,
Leitz
,
L.
, and
Min
,
S.
,
2009
, “
Burrs—Analysis, Control and Removal
,”
CIRP Ann.
,
58
(
2
), pp.
519
542
.
5.
Bu
,
Y.
,
Liao
,
W. H.
,
Tian
,
W.
,
Shen
,
J. X.
, and
Hu
,
J.
,
2016
, “
An Analytical Model for Exit Burrs in Drilling of Aluminum Materials
,”
Int. J. Adv. Manuf. Technol.
,
85
(
9
), pp.
2783
2796
.
6.
Zhang
,
X.
,
Yu
,
T.
,
Wang
,
W.
, and
Zhao
,
J.
,
2018
, “
Improved Analytical Prediction of Burr Formation in Micro End Milling
,”
Int. J. Mech. Sci.
,
151
, pp.
461
470
.
7.
Segonds
,
S.
,
Masounave
,
J.
,
Songmene
,
V.
, and
Bes
,
C.
,
2013
, “
A Simple Analytical Model for Burr Type Prediction in Drilling of Ductile Materials
,”
J. Mater. Process. Technol.
,
213
(
6
), pp.
971
977
.
8.
Zai
,
P.
,
Tong
,
J.
,
Liu
,
Z.
,
Zhang
,
Z. P.
,
Song
,
C. S.
, and
Zhao
,
B.
,
2021
, “
Analytical Model of Exit Burr Height and Experimental Investigation on Ultrasonic-Assisted High-Speed Drilling Micro-Holes
,”
J. Manuf. Process.
,
68
, pp.
807
817
.
9.
Asad
,
M.
,
Ijaz
,
H.
,
Saleem
,
W.
,
Mahfouz
,
A. S. B.
,
Ahmad
,
Z.
, and
Mabrouki
,
T.
,
2019
, “
Finite Element Analysis and Statistical Optimization of End-Burr in Turning AA2024
,”
Metals
,
9
(
3
), p.
276
.
10.
Luan
,
Y.
,
Lu
,
X.
,
Hou
,
P.
, and
Liang
,
S. Y.
,
2021
, “
Characteristics and Mechanism of Top Burr Formation in Micro-Milling LF21
,”
ASME J. Manuf. Sci. Eng.
,
143
(
7
), p.
071004
.
11.
Yadav
,
A. K.
,
Kumar
,
M.
,
Bajpai
,
V.
,
Singh
,
N. K.
, and
Singh
,
R. K.
,
2017
, “
FE Modeling of Burr Size in High-Speed Micro-Milling of Ti6Al4V
,”
Precis. Eng.
,
49
, pp.
287
292
.
12.
An
,
Q. L.
,
Dang
,
J. Q.
,
Liu
,
G. Y.
,
Dong
,
D. P.
,
Ming
,
W. W.
, and
Chen
,
M.
,
2019
, “
A New Method for Deburring of Servo Valve Core Edge Based on Ultraprecision Cutting With the Designed Monocrystalline Diamond Tool
,”
Sci. China-Technol. Sci.
,
62
(
10
), pp.
153
163
.
13.
Jin
,
S. Y.
,
Pramanik
,
A.
,
Basak
,
A. K.
,
Prakash
,
C.
,
Shankar
,
S.
, and
Debnath
,
S.
,
2020
, “
Burr Formation and Its Treatments—A Review
,”
Int. J. Adv. Manuf. Technol.
,
107
(
5
), pp.
2189
2210
.
14.
Franczyk
,
E.
,
Slusarczyk
,
L.
, and
Zebala
,
W.
,
2020
, “
Drilling Burr Minimization by Changing Drill Geometry
,”
Materials
,
13
(
14
), p
3207
.
15.
Kundu
,
S.
,
Das
,
S.
, and
Saha
,
P. P.
,
2014
, “
Optimization of Drilling Parameters to Minimize Burr by Providing Back-Up Support on Aluminium Alloy
,”
Procedia Eng.
,
97
, pp.
230
240
.
16.
Wu
,
F. H.
,
Liu
,
Z. J.
,
Guo
,
B. S.
,
Sun
,
Y. B.
, and
Chen
,
J. Y.
,
2021
, “
Research on the Burr-Free Interrupted Cutting Model of Metals
,”
J. Mater. Process. Technol.
,
295
, p.
117190
.
17.
Chen
,
N.
,
Zhang
,
X. L.
,
Wu
,
J. M.
,
Wu
,
Y.
,
Li
,
L.
, and
He
,
N.
,
2020
, “
Suppressing the Burr of High Aspect Ratio Structure by Optimizing the Cutting Parameters in the Micro-Milling Process
,”
Int. J. Adv. Manuf. Technol.
,
111
(
3–4
), pp.
985
997
.
18.
Gajrani
,
K. K.
,
Divse
,
V.
, and
Joshi
,
S. S.
,
2021
, “
Burr Reduction in Drilling Titanium Using Drills With Peripheral Slits
,”
Trans. Indian Inst. Met.
,
74
(
5
), pp.
1155
1172
.
19.
Niknam
,
S. A.
, and
Songmene
,
V.
,
2013
, “
Factors Governing Burr Formation During High-Speed Slot Milling of Wrought Aluminum Alloys
,”
Proc. Inst. Mech. Eng. Part B J. Eng.
,
227
(
8
), pp.
1165
1179
.
20.
Lauro
,
C. H.
,
Ribeiro Filho
,
S. L.
,
Brandão
,
L. C.
, and
Davim
,
J. P.
,
2016
, “
Analysis of Behaviour Biocompatible Titanium Alloy (Ti-6Al-7Nb) in the Micro-Cutting
,”
Measurement
,
93
, pp.
529
540
.
21.
Cardoso
,
P.
, and
Davim
,
J. P.
,
2010
, “
Optimization of Surface Roughness in Micromilling
,”
Mater. Manuf. Process.
,
25
(
10
), pp.
1115
1119
.
22.
Waldorf
,
D. J.
,
Devor
,
R. E.
, and
Kapoor
,
S. G.
,
1998
, “
A Slip-Line Field for Ploughing During Orthogonal Cutting
,”
ASME J. Manuf. Sci. Eng.
,
120
(
4
), pp.
693
699
.
23.
Dewhurst
,
P.
, and
Collins
,
I. F.
,
2010
, “
A Matrix Technique for Constructing Slip-Line Field Solutions to a Class of Plane Strain Plasticity Problems
,”
Int. J. Numer. Methods Eng.
,
7
(
3
), pp.
357
378
.
24.
Jaeger
,
J. C.
,
1942
, “
Moving Sources of Heat and the Temperature of Sliding Contacts
,”
Proceedings of the Royal Society
,
New South Wales
,
Australia, Oct. 7
, Vol. 76, pp.
203
224
.
25.
Wan
,
Y.
,
Cheng
,
K.
, and
Sun
,
S. F.
,
2013
, “
An Innovative Method for Surface Defects Prevention in Micro Milling and Its Implementation Perspectives
,”
Proc. Inst. Mech. Eng. J.: J. Eng. Tribol.
,
227
(
12
), pp.
1347
1355
.
26.
Huo
,
D.
,
2013
,
Micro-Cutting: Fundamentals and Applications
,
John Wiley & Sons
,
Bath, UK
.
27.
Yang
,
D.
, and
Liu
,
Z.
,
2015
, “
Surface Plastic Deformation and Surface Topography Prediction in Peripheral Milling With Variable Pitch end Mill
,”
Int. J. Mach. Tools Manuf.
,
91
, pp.
43
53
.
28.
Park
,
Y. W.
,
Cohen
,
P. H.
, and
Ruud
,
C. O.
,
1993
, “
The Development of a Mathematical Model for Predicting the Depth of Plastic Deformation in a Machined Surface
,”
Mater. Manuf. Process.
,
8
(
6
), pp.
703
715
.
29.
Derradji-Aouat
,
A.
,
2003
, “
Multi-surface Failure Criterion for Saline ice in the Brittle Regime
,”
Cold Reg. Sci. Technol.
,
36
(
1–3
), pp.
47
70
.
You do not currently have access to this content.