Abstract

Ultrasonic-assisted magnetic abrasive flow machining (UAMAFM) process shows enhanced finishing performance compared to conventional abrasive flow machining (AFM). In this present research paper, mathematical models for M˙R and Ra have been developed for the UAMAFM process by considering both steady-state and transient phenomena. The external ultrasonic and magnetic field assistance enhanced the velocity and length of contact of active abrasives, calculated from the kinematic analysis. The resultant finishing forces have also been evaluated by considering these external aids. The steady-state material removal per finishing cycle remains constant and depends on the velocity of motion, length of contact, resulting forces, number of active abrasives, and work material hardness. The transient material removal per finishing cycle was calculated in terms of the volume of irregularities present over the work surface, i.e., initial surface roughness. The mathematical model for surface roughness was developed in terms amount of material removed (MR), and initial (Ra0) and critical surface roughness (Racr). The predicted values of material removed and surface roughness from developed mathematical models agreed with experimental results with a deviation of 7.80% and 2.44%, respectively.

References

1.
Chen
,
X.
, and
Brian Rowe
,
W.
,
1996
, “
Analysis and Simulation of the Grinding Process. Part II: Mechanics of Grinding
,”
Int. J. Mach. Tools Manuf.
,
36
(
8
), pp.
883
896
.
2.
Naik
,
D. N. S.
, and
Sharma
,
V.
,
2022
, “
Thermophysical Investigations of Mango Seed Oil as a Novel Cutting Fluid: A Sustainable Approach Toward Waste to Value Addition
,”
ASME J. Manuf. Sci. Eng.
,
144
(
9
), p.
091004
.
3.
Jain
,
V. K.
,
Sidpara
,
A.
,
Sankar
,
M. R.
, and
Das
,
M.
,
2012
, “
Nano-Finishing Techniques: A Review
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
226
(
2
), pp.
327
346
.
4.
Williams
,
R. E.
,
1998
, “
Acoustic Emission Characteristics of Abrasive Flow Machining
,”
ASME J. Manuf. Sci. Eng.
,
120
(
2
), pp.
264
271
.
5.
Rhoades
,
L.
,
1991
, “
Abrasive Flow Machining: A Case Study
,”
J. Mater. Process. Technol.
,
28
(
1–2
), pp.
107
116
.
6.
Wei
,
H.
,
Wang
,
X.
,
Gao
,
H.
,
Peng
,
C.
, and
Wang
,
X.
,
2019
, “
A Study on the Influences of Abrasive Media’s Viscoelasticity on Entrance Effect in Abrasive Flow Machining
,”
ASME J. Manuf. Sci. Eng.
,
141
(
6
), p.
061010
.
7.
Dixit
,
N.
,
Sharma
,
V.
, and
Kumar
,
P.
,
2021
, “
Development and Characterization of Xanthan Gum-Based Abrasive Media and Performance Analysis Using Abrasive Flow Machining
,”
J. Manuf. Process.
,
67
, pp.
101
115
.
8.
Cheng
,
K.
,
Shao
,
Y.
,
Bodenhorst
,
R.
, and
Jadva
,
M.
,
2017
, “
Modeling and Simulation of Material Removal Rates and Profile Accuracy Control in Abrasive Flow Machining of the Integrally Bladed Rotor Blade and Experimental Perspectives
,”
ASME J. Manuf. Sci. Eng.
,
139
(
12
), p.
121020
.
9.
Dixit
,
N.
,
Sharma
,
V.
, and
Kumar
,
P.
,
2021
, “
Research Trends in Abrasive Flow Machining: A Systematic Review
,”
J. Manuf. Process.
,
64
(
March
), pp.
1434
1461
.
10.
Dixit
,
N.
,
Sharma
,
V.
, and
Kumar
,
P.
,
2022
, “
Experimental Investigations Into Abrasive Flow Machining (AFM) of 3D Printed ABS and PLA Parts
,”
Rapid Prototyp. J.
,
28
(
1
), pp.
161
174
.
11.
Wang
,
A. C.
, and
Weng
,
S. H.
,
2007
, “
Developing the Polymer Abrasive Gels in AFM Process
,”
J. Mater. Process. Technol.
,
192–193
, pp.
486
490
.
12.
Sharma
,
A. K.
,
Venkatesh
,
G.
,
Rajesha
,
S.
, and
Kumar
,
P.
,
2015
, “
Experimental Investigations Into Ultrasonic-Assisted Abrasive Flow Machining (UAAFM) Process
,”
Int. J. Adv. Manuf. Technol.
,
80
(
1–4
), pp.
477
493
.
13.
Jha
,
S.
, and
Jain
,
V. K.
,
2004
, “
Design and Development of the Magnetorheological Abrasive Flow Finishing (MRAFF) Process
,”
Int. J. Mach. Tools Manuf.
,
44
(
10
), pp.
1019
1029
.
14.
Singh
,
S.
, and
Shan
,
H. S.
,
2002
, “
Development of Magneto Abrasive Flow Machining Process
,”
Int. J. Mach. Tools Manuf.
,
42
(
8
), pp.
953
959
.
15.
Walia
,
R. S.
,
Shan
,
H. S.
, and
Kumar
,
P.
,
2006
, “
Abrasive Flow Machining With Additional Centrifugal Force Applied to the Media
,”
Mach. Sci. Technol.
,
10
(
3
), pp.
341
354
.
16.
Jain
,
R. K.
,
Jain
,
V. K.
, and
Dixit
,
P. M.
,
1999
, “
Modeling of Material Removal and Surface Roughness in Abrasive Flow Machining Process
,”
Int. J. Mach. Tools Manuf.
,
39
(
12
), pp.
1903
1923
.
17.
Singh
,
S.
,
Kumar
,
D.
,
Ravi Sankar
,
M.
, and
Jain
,
V. K.
,
2019
, “
Viscoelastic Medium Modeling and Surface Roughness Simulation of Microholes Finished by Abrasive Flow Finishing Process
,”
Int. J. Adv. Manuf. Technol.
,
100
(
5–8
), pp.
1165
1182
.
18.
Walia
,
R. S.
,
Shan
,
H. S.
, and
Kumar
,
P.
,
2009
, “
Modelling of Centrifugal-Force-Assisted Abrasive Flow Machining
,”
Proc. Inst. Mech. Eng. Part E: J. Process Mech. Eng.
,
223
(
4
), pp.
195
204
.
19.
Singh
,
S.
,
Shan
,
H.
, and
Kumar
,
P.
,
2002
, “
Wear Behavior of Materials in Magnetically Assisted Abrasive Flow Machining
,”
J. Mater. Process. Technol.
,
128
(
1–3
), pp.
155
161
.
20.
Das
,
M.
,
Jain
,
V. K.
, and
Ghoshdastidar
,
P. S.
,
2008
, “
Analysis of Magnetorheological Abrasive Flow Finishing (MRAFF) Process
,”
Int. J. Adv. Manuf. Technol.
,
38
(
5–6
), pp.
613
621
.
21.
Ravi Sankar
,
M.
,
Jain
,
V. K.
, and
Ramkumar
,
J.
,
2010
, “
Rotational Abrasive Flow Finishing (R-AFF) Process and Its Effects on Finished Surface Topography
,”
Int. J. Mach. Tools Manuf.
,
50
(
7
), pp.
637
650
.
22.
Sankar
,
M. R.
,
Jain
,
V. K.
, and
Ramkumar
,
J.
,
2009
, “
Experimental Investigations Into Rotating Workpiece Abrasive Flow Finishing
,”
Wear
,
267
(
1–4
), pp.
43
51
.
23.
Wei
,
H.
,
Peng
,
C.
,
Gao
,
H.
,
Wang
,
X.
, and
Wang
,
X.
,
2019
, “
On Establishment and Validation of a New Predictive Model for Material Removal in Abrasive Flow Machining
,”
Int. J. Mach. Tools Manuf.
,
138
, pp.
66
79
.
24.
Misra
,
A.
,
Pandey
,
P. M.
, and
Dixit
,
U. S.
,
2017
, “
Modeling of Material Removal in Ultrasonic Assisted Magnetic Abrasive Finishing Process
,”
Int. J. Mech. Sci.
,
131–132
, pp.
853
867
.
25.
Misra
,
A.
,
Pandey
,
P. M.
, and
Dixit
,
U. S.
,
2017
, “
Modeling and Simulation of Surface Roughness in Ultrasonic Assisted Magnetic Abrasive Finishing Process
,”
Int. J. Mech. Sci.
,
133
, pp.
344
356
.
26.
Jain
,
V. K.
, and
Adsul
,
S. G.
,
2000
, “
Experimental Investigations Into Abrasive Flow Machining (AFM)
,”
Int. J. Mach. Tools Manuf.
,
40
(
7
), pp.
1003
1021
.
27.
Jain
,
V. K.
,
Kumar
,
R.
,
Dixit
,
P. M.
, and
Sidpara
,
A.
,
2009
, “
Investigations Into Abrasive Flow Finishing of Complex Workpieces Using FEM
,”
Wear
,
267
(
1–4
), pp.
71
80
.
28.
Kumar S
,
S.
, and
Hiremath
,
S.S.
,
2019
, “
Effect of Surface Roughness and Surface Topography on Wettability of Machined Biomaterials Using Flexible Viscoelastic Polymer Abrasive Media
,”
Surf. Topogr. Metrol. Prop.
,
7
(
1
), p.
015004
.
29.
Sharma
,
V.
,
Kumar
,
P.
, and
Dixit
,
N.
,
2021
, “An Ultrasonic Assisted Magnetic Abrasive Flow Machining Process and a Device Therefore,” Indian Patent Application No. 202111054926.
30.
Das
,
M.
,
Jain
,
V. K.
, and
Ghoshdastidar
,
P. S.
,
2010
, “
Nano-Finishing of Stainless-Steel Tubes Using Rotational Magnetorheological Abrasive Flow Finishing Process
,”
Mach. Sci. Technol.
,
14
(
3
), pp.
365
389
.
31.
Jain
,
R. K.
, and
Jain
,
V. K.
,
2001
, “
Specific Energy and Temperature Determination in Abrasive Flow Machining Process
,”
Int. J. Mach. Tools Manuf.
,
41
(
12
), pp.
1689
1704
.
32.
Shaw
,
M. C.
,
1995
, “
Precision Finishing*
,”
CIRP Ann.
,
44
(
1
), pp.
343
348
.
33.
Jayant
,
R.
, and
Jain
,
V. K.
,
2019
, “
Analysis of Finishing Forces and Surface Finish During Magnetorheological Abrasive Flow Finishing of Asymmetric Workpieces
,”
J. Micromanuf.
,
2
(
2
), pp.
133
151
.
34.
Narayanasamy
,
R.
, and
Sowerby
,
R.
,
1994
, “
Wrinkling of Sheet Metals When Drawing Through a Conical Die
,”
J. Mater. Process. Technol.
,
41
(
3
), pp.
275
290
.
35.
Zhang
,
W.
,
Zhu
,
Z.
,
Zhou
,
C.
, and
He
,
X.
,
2021
, “
Biaxial Tensile Behavior of Commercially Pure Titanium Under Various In-Plane Load Ratios and Strain Rates
,”
Metals
,
11
(
1
), pp.
1
18
.
36.
Serebryany
,
V.
,
Fundenberger
,
J. J.
,
Mel’nikov
,
K.
, and
Wagner
,
F.
,
2007
,
3rd France-Russia Seminar
,
EDP Sciences, Les Ulis
,
France
, pp.
23
26
.
37.
Wang
,
A.C.
,
Tsai
,
L.
,
Liang
,
K.Z.
,
Liu
,
C.H.
, and
Weng
,
S.H.
,
2009
, “
Uniform Surface Polished Method of Complex Holes in Abrasive Flow Machining
,”
Trans. Nonferrous Met. Soc. China
,
19
, pp.
s250
s257
.
38.
Stradling
,
A. W.
,
1993
, “
The Physics of Open-Gradient Dry Magnetic Separation
,”
Int. J. Miner. Process.
,
39
(
1–2
), pp.
1
18
.
39.
Das
,
M.
,
Jain
,
V. K.
, and
Ghoshdastidar
,
P. S.
,
2011
, “
The Out-of-Roundness of the Internal Surfaces of Stainless Steel Tubes Finished by the Rotational–Magnetorheological Abrasive Flow Finishing Process
,”
Mater. Manuf. Process.
,
26
(
8
), pp.
1073
1084
.
40.
Jain
,
R. K.
,
Jain
,
V. K.
, and
Kalra
,
P. K.
,
1999
, “
Modelling of Abrasive Flow Machining Process: A Neural Network Approach
,”
Wear
,
231
(
2
), pp.
242
248
.
41.
Archard
,
J. F.
,
1953
, “
Contact and Rubbing of Flat Surfaces
,”
J. Appl. Phys.
,
24
(
8
), pp.
981
988
.
You do not currently have access to this content.