Abstract

Due to the continuous push toward environmental regulations to reduce the impact on the environment, more sustainable manufacturing is in demand. Easily available material like iron-carbon based alloys are denser but exhibit higher strength and good formability. Alternatively, low dense materials have the potential to reduce the weight, but they lose the “easy-to-deform” spot. In addition, the traditional method to characterize the material is not sufficient to capture the material model which would accurately predict the complex nature of deformation. Thus, the present study is focused on how to make the material more deformable in the process by evaluating the parameters in deformation through the hole expansion process. For this study, four tests were chosen, namely hemispherical dome test, cylindrical tool test, conical tool test, and biaxial test. Except the biaxial test, all tests use the rigid tool punch to deform the hole. The cruciform specimen with a center hole was used to make the sample, which fits in all the considered tests. Force–displacement curves were plotted and discussed. In addition, tests were also performed on annealed materials to understand the hole expansion in ductile material. Based on the results it was observed that biaxial tests do not provide any pressurization effect and all tests which include the rigid tool to deform the hole doe. Due to the pressurization effect, the hole was expanded more. It was also noted that the hole expansion was more in ductile material and pressurization effect increases with ductile material.

References

1.
Cao
,
J.
, and
Banu
,
M.
,
2020
, “
Opportunities and Challenges in Metal Forming for Lightweighting: Review and Future Work
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p.
110813
.
2.
Narayanasamy
,
R.
,
Narayanan
,
C. S.
,
Padmanabhan
,
P.
, and
Venugopalan
,
T.
,
2010
, “
Effect of Mechanical and Fractographic Properties on Hole Expandability of Various Automobile Steels During Hole Expansion Test
,”
Int. J. Adv. Manuf. Technol.
,
47
(
1–4
), pp.
365
380
.
3.
Mackensen
,
A.
,
Golle
,
M.
,
Golle
,
R.
, and
Hoffmann
,
H.
,
2009
, “
Determination of the Hole Expansion Properties of AHSS Using an Optical 3D Deformation System
,”
International Deep Drawing Research Group Conference
,
Golden, CO
,
June 1–3
, pp.
547
558
.
4.
Nikhare
,
C. P.
,
Vorisek
,
E.
,
Nolan
,
J. R.
, and
Roth
,
J. T.
,
2017
, “
Forming Limit Differences in Hemispherical Dome and Biaxial Test During Equibiaxial Tension on Cruciform
,”
ASME J. Eng. Mater. Technol.
,
139
(
4
), p.
041011
.
5.
Nikhare
,
C. P.
,
2018
, “
Experimental and Numerical Investigation of Forming Limit Differences in Biaxial and Dome Test
,”
ASME J. Manuf. Sci. Eng.
,
140
(
8
), p.
081005
.
6.
Hyun
,
D. I.
,
Oak
,
S. M.
,
Kang
,
S. S.
, and
Moon
,
Y. H.
,
2002
, “
Estimation of Hole Flangeability for High Strength Steel Plates
,”
J. Mater. Process. Technol.
,
130–131
, pp.
9
13
.
7.
Prillhofer
,
R.
,
Rank
,
G.
,
Berneder
,
J.
,
Antrekowitsch
,
H.
,
Uggowitzer
,
P. J.
, and
Pogatscher
,
S.
,
2014
, “
Property Criteria for Automotive Al-Mg-Si Sheet Alloys
,”
Materials.
,
7
(
7
), pp.
5047
5068
.
8.
Samadian
,
P.
,
ten Kortenaar
,
L.
,
Omer
,
K.
,
Butcher
,
C.
, and
Worswick
,
M. J.
,
2020
, “
Fracture Characterization of Tailored Usibor® 1500-AS and Damage Modelling Based on a Coupled-Micromechanical-Phenomenological Strategy
,”
Eng. Fract. Mech.
,
223
, p.
106785
.
9.
Samadian
,
P.
,
Butcher
,
C.
, and
Worswick
,
M. J.
,
2021
, “
A Mean-Field Homogenization Approach to Predict Fracture in As-Quenched Microstructures of Ductibor® 500-AS Steel: Characterization and Modelling
,”
Int. J. Solids Struct.
,
229
, p.
111137
.
10.
Akşen
,
T. A.
, and
Firat
,
M.
,
2021
, “
Blank Thinning Predictions of an Aluminum Alloy in Hole Expansion Process Using Finite Element Method
,”
SN Appl. Sci.
,
3
(
3
), pp.
1
9
.
11.
Dahan
,
Y.
,
Chastel
,
Y.
,
Duroux
,
P.
,
Wilsius
,
J.
,
Hein
,
P.
, and
Massoni
,
E.
,
2007
, “
Procedure for the Experimental Determination of a Forming Limit Curve for USIBOR 1500 P
,”
International Deep Drawing Research Group (IDDRG)
,
Györ, Hungary
,
May 21–23
, pp.
1
8
.
12.
Borrego
,
M.
,
Morales-Palma
,
D.
,
Martínez-Donaire
,
A. J.
,
Centeno
,
G.
, and
Vallellano
,
C.
,
2020
, “
Analysis of Formability in Conventional Hole Flanging of AA7075-O Sheets: Punch Edge Radius Effect and Limitations of the FLC
,”
Int. J. Mater. Form.
,
13
(
2
), pp.
303
316
.
13.
Borrego
,
M.
,
Morales-Palma
,
D.
, and
Vallellano
,
C.
,
2021
, “
Analysis of Flangeability by Single-Stage SPIF and Press-Working in AA7075-O Sheet
,”
ASME J. Manuf. Sci. Eng.
,
143
(
1
), p.
011005
.
14.
Pathak
,
N.
,
Butcher
,
C.
, and
Worswick
,
M.
,
2016
, “
Assessment of the Critical Parameters Influencing the Edge Stretchability of Advanced High-Strength Steel Sheet
,”
J. Mater. Eng. Perform.
,
25
(
11
), pp.
4919
4932
.
15.
Mori
,
K. I.
,
Abe
,
Y.
, and
Suzui
,
Y.
,
2010
, “
Improvement of Stretch Flangeability of Ultra High Strength Steel Sheet by Smoothing of Sheared Edge
,”
J. Mater. Process. Technol.
,
210
(
4
), pp.
653
659
.
16.
Uthaisangsuk
,
V.
,
Prahl
,
U.
, and
Bleck
,
W.
,
2009
, “
Stretch-Flangeability Characterisation of Multiphase Steel Using a Microstructure Based Failure Modelling
,”
Comput. Mater. Sci.
,
45
(
3
), pp.
617
623
.
17.
Ko
,
Y. K.
,
Lee
,
J. S.
,
Huh
,
H.
,
Kim
,
H. K.
, and
Park
,
S. H.
,
2007
, “
Prediction of Fracture in Hub-Hole Expanding Process Using a New Ductile Fracture Criterion
,”
J. Mater. Process. Technol.
,
187–188
, pp.
358
362
.
18.
Wiedenmann
,
R.
,
Sartkulvanich
,
P.
, and
Altan
,
T.
,
2009
, “
Finite Element Analysis on the Effect of Sheared Edge Quality in Blanking upon Hole Expansion of Advanced High Strength Steel
,”
International Deep Drawing Research Group Conference
,
Golden, CO
,
June 1–3
, pp.
559
570
.
19.
Huang
,
Y. M.
, and
Chien
,
K. H.
,
2001
, “
The Formability Limitation of the Hole-Flanging Process
,”
J. Mater. Process. Technol.
,
117
(
1–2
), pp.
45
51
.
20.
Wang
,
N. M.
, and
Wenner
,
M. L.
,
1974
, “
An Analytical and Experimental Study of Stretch Flanging
,”
Int. J. Mech. Sci.
,
16
(
2
), pp.
135
143
.
21.
Asnafi
,
N.
,
1999
, “
On Stretch and Shrink Flanging of Sheet Aluminium by Fluid Forming
,”
J. Mater. Process. Technol.
,
97
(
1–3
), pp.
198
214
.
22.
De Moor
,
E.
,
Matlock
,
D. K.
,
Speer
,
J. G.
,
Fojer
,
C.
, and
Penning
,
J.
,
2012
, “
Comparison of Hole Expansion Properties of Quench & Partitioned, Quench & Tempered and Austempered Steels
.”
SAE Technical Paper
.
23.
Balisetty
,
V.
,
Chakkingal
,
U.
, and
Venugopal
,
S.
,
2021
, “
Evaluation of Stretch Flangeability of Dual-Phase Steels by Hole Expansion Test
,”
Int. J. Adv. Manuf. Technol.
,
114
(
1
), pp.
205
217
.
24.
Arruda
,
M. V. P.
,
Melo
,
T. M. F.
,
Costa
,
F. S.
, and
Santos
,
D. B.
,
2019
, “
Microstructural Evolution During Continuous Annealing of a 980 MPa Cold Rolled Steel Grade
,”
J. Phys. Conf. Ser.
,
1270
(
1
), p.
012020
.
25.
Ghosh
,
A. K.
, and
Siegfried
,
S. H.
,
1974
, “
Stretching Limits in Sheet Metals: in-Plane Versus out-of-Plane Deformation
,”
Metall. Trans.
,
5
(
10
), pp.
2161
2164
.
26.
Wu
,
P. D.
,
Embury
,
J. D.
,
Lloyd
,
D. J.
,
Huang
,
Y.
, and
Neale
,
K. W.
,
2009
, “
Effects of Superimposed Hydrostatic Pressure on Sheet Metal Formability
,”
Int. J. Plast.
,
25
(
9
), pp.
1711
1725
.
27.
Allwood
,
J. M.
, and
Shouler
,
D. R.
,
2009
, “
Generalised Forming Limit Diagrams Showing Increased Forming Limits with non-Planar Stress States
,”
Int. J. Plast.
,
25
(
7
), pp.
1207
1230
.
28.
Trozzo
,
W. A.
, and
Nikhare
,
C. P.
,
2015
, “
Mechanical Behavior of Annealed AA5083 Alloy
,”
Proceedings of IDDRG
,
Shanghai, China
,
May 31–June 3
, pp.
82
89
.
29.
Pier
,
B. F.
, and
Nikhare
,
C. P.
,
2018
, “
Outer Diameter to Thickness Ratio Effect on Tube Flaring Behavior
,”
Proceedings of ASME 2018 13th International Manufacturing Science and Engineering Conference
, p.
V004T03A029
.
You do not currently have access to this content.