Abstract

Strengthening titanium alloys and mitigating their wear degradation at various temperatures is the key to industrial applications. In this study, high-performance Ti6Al4V alloy (here, Ti with 6.25 wt% Al and 4.17 wt% V) was prepared by laser solid forming (LSF). The phase and microstructure of the Ti6Al4V alloys were systematically examined, and the overall improved mechanical properties were achieved. The coefficient of friction (CoF) and wear of LSFed Ti6Al4V alloy against WC-6%Co cemented carbide using a ball-on-disc tribometer at various temperatures revealed a temperature-dependent wear mechanism. During the experiment, the CoF of LSFed Ti6Al4V would increase initially and then decrease with the increased temperature. This trend is determined by the abrasive wear dominating at a lower temperature, and it gradually changes to oxidative wear and fatigue wear under higher temperatures. LSF provides a promising way to achieve supreme mechanical and tribological properties in Ti6Al4V simultaneously.

References

1.
Su
,
Y.
,
Luo
,
S.-C.
,
Meng
,
L.
,
Gao
,
P.
, and
Wang
,
Z.-M.
,
2020
, “
Selective Laser Melting of In Situ TiB/Ti6Al4V Composites: Formability Microstructure Evolution and Mechanical Performance
,”
Acta Metall. Sin. (Engl. Lett.)
,
33
(
6
), pp.
774
788
.
2.
Vilardell
,
A. M.
,
Yadroitsev
,
I.
,
Yadroitsava
,
I.
,
Albu
,
M.
,
Takata
,
N.
,
Kobashi
,
M.
,
Krakhmalev
,
P.
,
Kouprianoff
,
D.
,
Kothleitner
,
G.
, and
Plessis
,
A. D.
,
2020
, “
Manufacturing and Characterization of In-Situ Alloyed Ti6Al4V(ELI)-3 at% Cu by Laser Powder Bed Fusion
,”
Addit. Manuf.
,
36
, pp.
101436
.
3.
Carroll
,
B. E.
,
Palmer
,
T. A.
, and
Beese
,
A. M.
,
2015
, “
Anisotropic Tensile Behavior of Ti–6Al–4V Components Fabricated With Directed Energy Deposition Additive Manufacturing
,”
Acta Mater.
,
87
, pp.
309
320
.
4.
Li
,
J.
,
Lin
,
X.
,
Wang
,
J.
,
Zheng
,
M.
,
Guo
,
P.
,
Zhang
,
Y.
,
Ren
,
Y.
,
Liu
,
J.
, and
Huang
,
W.
,
2019
, “
Effect of Stress-Relief Annealing on Anodic Dissolution Behaviour of Additive Manufactured Ti-6Al-4V Via Laser Solid Forming
,”
Corros. Sci.
,
153
, pp.
314
326
.
5.
Zhang
,
D.
,
Qiu
,
D.
,
Gibson
,
M. A.
,
Zheng
,
Y.
,
Fraser
,
H. L.
,
StJohn
,
D. H.
, and
Easton
,
M. A.
,
2019
, “
Additive Manufacturing of Ultrafine-Grained High-Strength Titanium Alloys
,”
Nature
,
576
(
7785
), pp.
91
95
.
6.
Kadirgama
,
K.
,
Harun
,
W. S. W.
,
Tarlochan
,
F.
,
Samykano
,
M.
,
Ramasamy
,
D.
,
Azir
,
M. Z.
, and
Mehboob
,
H.
,
2018
, “
Statistical and Optimize of Lattice Structures With Selective Laser Melting (SLM) of Ti6AL4V Material
,”
Int. J. Adv. Manuf. Technol.
,
97
(
1–4
), pp.
495
510
.
7.
Benedetti
,
M.
,
Cazzolli
,
M.
,
Fontanari
,
V.
, and
Leoni
,
M.
,
2016
, “
Fatigue Limit of Ti6Al4V Alloy Produced by Selective Laser Sintering
,”
Procedia Struct. Integr.
,
2
, pp.
3158
3167
.
8.
Raju
,
R.
,
Duraiselvam
,
M.
,
Petley
,
V.
,
Verma
,
S.
, and
Rajendran
,
R.
,
2015
, “
Microstructural and Mechanical Characterization of Ti6Al4V Refurbished Parts Obtained by Laser Metal Deposition
,”
Mater. Sci. Eng. A
,
643
, pp.
64
71
.
9.
Fu
,
M.
,
Yuan
,
Y.
,
Ma
,
X.
, and
Lin
,
X.
,
2019
, “
A Study of α Variant Selection in Laser Solid Forming Ti-6Al-4V
,”
J. Alloys Compd.
,
792
, pp.
1261
1266
.
10.
Wen
,
X.
,
Wang
,
Q.
,
Mu
,
Q.
,
Kang
,
N.
,
Sui
,
S.
,
Yang
,
H.
,
Lin
,
X.
, and
Huang
,
W.
,
2019
, “
Laser Solid Forming Additive Manufacturing TiB2 Reinforced 2024Al Composite: Microstructure and Mechanical Properties
,”
Mater. Sci. Eng. A
,
745
, pp.
319
325
.
11.
Li
,
J.
,
Lin
,
X.
,
Guo
,
P.
, and
Huang
,
W.
,
2019
, “
Effect of Layer Band and Heterogeneity of Microstructure on Electrochemical Dissolution of Laser Solid Formed Ti-6Al-4V Alloy
,”
J. Laser Appl.
,
31
(
2
), p.
022312
.
12.
Xu
,
Q.
,
Zhang
,
P.
,
Yang
,
L.
,
Le
,
G.
,
He
,
S.
,
He
,
X.
,
Liu
,
X.
, and
Wang
,
W.
,
2021
, “
Microstructure and Mechanical Properties of Be–Al Alloy Fabricated by Laser Solid Forming
,”
Mater. Sci. Eng. A
,
799
, pp.
140335
.
13.
Lu
,
X.
,
Lin
,
X.
,
Chiumenti
,
M.
,
Cervera
,
M.
,
Hu
,
Y.
,
Ji
,
X.
,
Ma
,
L.
, and
Huang
,
W.
,
2019
, “
In Situ Measurements and Thermo-Mechanical Simulation of Ti–6Al–4V Laser Solid Forming Processes
,”
Int. J. Mech. Sci.
,
153–154
, pp.
119
130
.
14.
Zhao
,
Z.
,
Chen
,
J.
,
Lu
,
X.
,
Tan
,
H.
,
Lin
,
X.
, and
Huang
,
W.
,
2017
, “
Formation Mechanism of the α Variant and Its Influence on the Tensile Properties of Laser Solid Formed Ti-6Al-4V Titanium Alloy
,”
Mater. Sci. Eng. A
,
691
, pp.
16
24
.
15.
Shi
,
L.
,
Lei
,
L.
,
Fu
,
X.
,
Yang
,
Y.
, and
Fu
,
J.
,
2020
, “
Effect of Fe Content on the Microstructure and Tensile Properties of TC4 Alloy Fabricated by Laser Solid Forming
,”
Rare Met. Mater. Eng.
,
49
(
05
), pp.
1674
1680
. CNKI:SUN:COSE.0.2020-05-029
16.
Zhao
,
Z.
,
Chen
,
J.
,
Tan
,
H.
,
Zhang
,
G.
,
Lin
,
X.
, and
Huang
,
W.
,
2018
, “
Achieving Superior Ductility for Laser Solid Formed Extra Low Interstitial Ti-6Al-4V Titanium Alloy Through Equiaxial Alpha Microstructure
,”
Scr. Mater.
,
146
, pp.
187
191
.
17.
Lu
,
Y.
,
Tang
,
H. B.
,
Fang
,
Y. L.
,
Liu
,
D.
, and
Wang
,
H. M.
,
2012
, “
Microstructure Evolution of Sub-Critical Annealed Laser Deposited Ti–6Al–4V Alloy
,”
Mater. Des.
,
37
, pp.
56
63
.
18.
Zhou
,
J.
,
Sun
,
Y.
,
Huang
,
S.
,
Sheng
,
J.
,
Li
,
J.
, and
Agyenim-Boateng
,
E.
,
2019
, “
Effect of Laser Peening on Friction and Wear Behavior of Medical Ti6Al4V Alloy
,”
Opt. Laser Technol.
,
109
, pp.
263
269
.
19.
Budzyński
,
P.
,
Kamiński
,
M.
,
Surowiec
,
Z.
,
Wiertel
,
M.
,
Skuratov
,
V. A.
, and
Korneeva
,
E. A.
,
2021
, “
Effects of Xenon-Ion Irradiation on the Tribological Properties and Crystal Structure of Titanium and Its Alloy Ti6Al4V
,”
Tribol. Int.
,
156
, pp.
106854
.
20.
Marquer
,
M.
,
Laheurte
,
P.
,
Faure
,
L.
, and
Philippon
,
S.
,
2020
, “
Influence of 3D-Printing on the Behaviour of Ti6Al4V in High-Speed Friction
,”
Tribol. Int.
,
152
, p.
106557
.
21.
Chandramohan
,
P.
,
Bhero
,
S.
,
Obadele
,
B. A.
, and
Olubambi
,
P. A.
,
2017
, “
Laser Additive Manufactured Ti–6Al–4V Alloy: Tribology and Corrosion Studies
,”
Int. J. Adv. Manuf. Technol.
,
92
(
5–8
), pp.
3051
3061
.
22.
Li
,
H.
,
Ramezani
,
M.
, and
Chen
,
Z. W.
,
2019
, “
Dry Sliding Wear Performance and Behaviour of Powder Bed Fusion Processed Ti–6Al–4V Alloy
,”
Wear
,
440–441
, p.
203103
.
23.
Li
,
X. X.
,
Zhang
,
Q. Y.
,
Zhou
,
Y.
,
Liu
,
J. Q.
,
Chen
,
K. M.
, and
Wang
,
S. Q.
,
2016
, “
Mild and Severe Wear of Titanium Alloys
,”
Tribol. Lett.
,
61
(
2
), p.
14
.
24.
Niu
,
Q. L.
,
Zheng
,
X. H.
,
Ming
,
W. W.
, and
Chen
,
M.
,
2013
, “
Friction and Wear Performance of Titanium Alloys Against Tungsten Carbide Under Dry Sliding and Water Lubrication
,”
Tribol. Trans.
,
56
(
1
), pp.
101
108
.
25.
Philip
,
J. T.
,
Mathew
,
J.
, and
Kuriachen
,
B.
,
2019
, “
Tribology of Ti6Al4V: A Review
,”
Friction
,
7
(
6
), pp.
497
536
.
26.
Zhang
,
X. Y.
,
Fang
,
G.
,
Leeflang
,
S.
,
Böttger
,
A. J.
,
A. Zadpoor
,
A.
, and
Zhou
,
J.
,
2018
, “
Effect of Subtransus Heat Treatment on the Microstructure and Mechanical Properties of Additively Manufactured Ti-6Al-4V Alloy
,”
J. Alloys Compd.
,
735
, pp.
1562
1575
.
27.
Vrancken
,
B.
,
Thijs
,
L.
,
Kruth
,
J. P.
, and
Van Humbeeck
,
J.
,
2012
, “
Heat Treatment of Ti6Al4V Produced by Selective Laser Melting: Microstructure and Mechanical Properties
,”
J. Alloys Compd.
,
542
, pp.
177
185
.
28.
Liu
,
Q.
,
Wang
,
Y.
,
Zheng
,
H.
,
Tang
,
K.
,
Ding
,
L.
,
Li
,
H.
, and
Gong
,
S.
,
2016
, “
Microstructure and Mechanical Properties of LMD–SLM Hybrid Forming Ti6Al4V Alloy
,”
Mater. Sci. Eng. A
,
660
, pp.
24
33
.
29.
Cai
,
C.
,
Wu
,
X.
,
Liu
,
W.
,
Zhu
,
W.
,
Chen
,
H.
,
Qiu
,
J. C. D.
,
Sun
,
C.-N.
,
Liu
,
J.
,
Wei
,
Q.
, and
Shi
,
Y.
,
2020
, “
Selective Laser Melting of Near-α Titanium Alloy Ti-6Al-2Zr-1Mo-1V: Parameter Optimization, Heat Treatment and Mechanical Performance
,”
J. Mater. Sci. Technol.
,
57
, pp.
51
64
.
30.
Rabadia
,
C. D.
,
Liu
,
Y. J.
,
Cao
,
G. H.
,
Li
,
Y. H.
,
Zhang
,
C. W.
,
Sercombe
,
T. B.
,
Sun
,
H.
, and
Zhang
,
L. C.
,
2018
, “
High-Strength β Stabilized Ti-Nb-Fe-Cr Alloys With Large Plasticity
,”
Mater. Sci. Eng. A
,
732
, pp.
368
377
.
31.
Gu
,
K.
,
Wang
,
J.
, and
Zhou
,
Y.
,
2014
, “
Effect of Cryogenic Treatment on Wear Resistance of Ti–6Al–4V Alloy for Biomedical Applications
,”
J. Mech. Behav. Biomed. Mater.
,
30
, pp.
131
139
.
32.
Munagala
,
V. N. V.
,
Torgerson
,
T. B.
,
Scharf
,
T. W.
, and
Chromik
,
R. R.
,
2019
, “
High Temperature Friction and Wear Behavior of Cold-Sprayed Ti6Al4V and Ti6Al4V-TiC Composite Coatings
,”
Wear
,
426–427
, pp.
357
369
.
33.
Sun
,
Q.
,
Hu
,
T.
,
Fan
,
H.
,
Zhang
,
Y.
, and
Hu
,
L.
,
2016
, “
Thermal Oxidation Behavior and Tribological Properties of Textured TC4 Surface: Influence of Thermal Oxidation Temperature and Time
,”
Tribol. Int.
,
94
, pp.
479
489
.
34.
Liu
,
C.
,
Li
,
Z.
,
Lu
,
W.
,
Bao
,
Y.
,
Xia
,
W.
,
Wu
,
X.
,
Zhao
,
H.
, et al.
,
2021
, “
Reactive Wear Protection Through Strong and Deformable Oxide Nanocomposite Surfaces
,”
Nat. Commun.
,
12
(
1
), pp.
1
8
.
35.
Hu
,
C. Y.
,
Wan
,
X. L.
,
Wu
,
K. M.
,
Xu
,
D. M.
,
Li
,
G. Q.
,
Xu
,
G.
, and
Misra
,
R. D. K.
,
2020
, “
On the Impacts of Grain Refinement and Strain-Induced Deformation on Three-Body Abrasive Wear Responses of 18Cr–8Ni Austenitic Stainless Steel
,”
Wear
,
446
, p.
203181
.
36.
Pan
,
S.
,
Jin
,
K.
,
Wang
,
T.
,
Zhang
,
Z.
,
Zheng
,
L.
, and
Umehara
,
N.
,
2022
, “
Metal Matrix Nanocomposites in Tribology: Manufacturing, Performance, and Mechanisms
,”
Friction
, pp.
1
39
.
37.
Verma
,
A.
,
Tarate
,
P.
,
Abhyankar
,
A. C.
,
Mohape
,
M. R.
,
Gowtam
,
D. S.
,
Deshmukh
,
V. P.
, and
Shanmugasundaram
,
T.
,
2019
, “
High Temperature Wear in CoCrFeNiCux High Entropy Alloys: The Role of Cu
,”
Scr. Mater.
,
161
, pp.
28
31
.
38.
Jeurgens
,
L. P. H.
,
Sloof
,
W. G.
,
Tichelaar
,
F. D.
, and
Mittemeijer
,
E. J.
,
2002
, “
Structure and Morphology of Aluminium-Oxide Films Formed by Thermal Oxidation of Aluminium
,”
Thin Solid Films
,
418
(
2
), pp.
89
101
.
39.
Jeurgens
,
L. P. H.
,
Sloof
,
W. G.
,
Tichelaar
,
F. D.
, and
Mittemeijer
,
E. J.
,
2000
, “
Thermodynamic Stability of Amorphous Oxide Films on Metals: Application to Aluminum Oxide Films on Aluminum Substrates
,”
Phys. Rev. B
,
62
(
7
), pp.
4707
4719
.
You do not currently have access to this content.