Abstract

Wire and arc additive manufacturing (WAAM) has become an economically viable option for fast fabrication of large near-net shape parts using high-value materials in the aerospace and petroleum industries. However, wide adoption of WAAM technologies has been limited by low shape accuracy, high surface roughness, and poor reproducibility. Since WAAM part quality is affected by a multitude of factors related to part geometries, materials, and process parameters, experimental characterization or physics-based simulation for WAAM process optimization can be cost prohibitive, particularly for new part designs. As an effective alternative, data-analytical approaches have been developed for prescriptive modeling and compensation of shape deviations in 3D printed parts. However, WAAM faces a unique challenge of large shape deviation and high surface roughness at the same time. Accurate prediction and control of WAAM part quality require process-meaningful error decomposition under geometric measurement uncertainties. We propose a generalized additive modeling approach to separate global geometric shape deformation from surface roughness. Under this statistical framework, tensor product basis expansion is adopted to learn both the low-order shape deformation and high-order roughness patterns. The established predictive model enables optimal geometric compensation for product redesign to reduce shape deformation from the target geometry without altering process parameters. Experimental validation on WAAM manufactured cylindrical walls of various radii shows the effectiveness of the proposed framework.

References

1.
Gibson
,
I.
,
Rosen
,
D.
, and
Stucker
,
B.
,
2009
,
Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing
,
Springer US
,
New York
.
2.
Jafari
,
D.
,
Wits
,
W. W.
,
Vaneker
,
T. H.
,
Demir
,
A. G.
,
Previtali
,
B.
,
Geurts
,
B. J.
, and
Gibson
,
I.
,
2020
, “
Pulsed Mode Selective Laser Melting of Porous Structures: Structural and Thermophysical Characterization
,”
Addit. Manuf.
,
35
(
1
), p.
101263
.
3.
Ding
,
D.
,
Pan
,
Z.
,
Cuiuri
,
D.
, and
Li
,
H.
,
2015
, “
Wire-Feed Additive Manufacturing of Metal Components: Technologies, Developments and Future Interests
,”
Int. J. Adv. Manuf. Technol.
,
81
(
1
), pp.
465
481
.
4.
Bourell
,
D.
,
Kruth
,
J. P.
,
Leu
,
M.
,
Levy
,
G.
,
Rosen
,
D.
,
Beese
,
A. M.
, and
Clare
,
A.
,
2017
, “
Materials for Additive Manufacturing
,”
CIRP Ann.
,
66
(
2
), pp.
659
681
.
5.
Mughal
,
M.
,
Fawad
,
H.
, and
Mufti
,
R.
,
2006
, “
Three-Dimensional Finite-Element Modelling of Deformation in Weld-Based Rapid Prototyping
,”
Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci.
,
220
(
6
), pp.
875
885
.
6.
Karunakaran
,
K.
,
Suryakumar
,
S.
,
Pushpa
,
V.
, and
Akula
,
S.
,
2010
, “
Low Cost Integration of Additive and Subtractive Processes for Hybrid Layered Manufacturing
,”
Robot. Comput. Integr. Manuf.
,
26
(
5
), pp.
490
499
.
7.
Panchagnula
,
J. S.
, and
Simhambhatla
,
S.
,
2018
, “
Manufacture of Complex Thin-Walled Metallic Objects Using Weld-Deposition Based Additive Manufacturing
,”
Robot. Comput. Integr. Manuf.
,
49
(
1
), pp.
194
203
.
8.
Jafari
,
D.
,
Vaneker
,
T. H.
, and
Gibson
,
I.
,
2021
, “
Wire and Arc Additive Manufacturing: Opportunities and Challenges to Control the Quality and Accuracy of Manufactured Parts
,”
Mater. Des.
,
202
(
1
), p.
109471
.
9.
Ding
,
D.
,
Pan
,
Z.
,
Cuiuri
,
D.
,
Li
,
H.
,
Larkin
,
N.
, and
Van Duin
,
S.
,
2016
, “
Automatic Multi-Direction Slicing Algorithms for Wire Based Additive Manufacturing
,”
Robot. Comput. Integr. Manuf.
,
37
(
1
), pp.
139
150
.
10.
Ding
,
J.
,
Colegrove
,
P.
,
Mehnen
,
J.
,
Ganguly
,
S.
,
Almeida
,
P. S.
,
Wang
,
F.
, and
Williams
,
S.
,
2011
, “
Thermo-Mechanical Analysis of Wire and Arc Additive Layer Manufacturing Process on Large Multi-Layer Parts
,”
Comput. Mater. Sci.
,
50
(
12
), pp.
3315
3322
.
11.
Xiong
,
J.
,
Li
,
R.
,
Lei
,
Y.
, and
Chen
,
H.
,
2018
, “
Heat Propagation of Circular Thin-Walled Parts Fabricated in Additive Manufacturing Using Gas Metal Arc Welding
,”
J. Mater. Process. Technol.
,
251
(
1
), pp.
12
19
.
12.
Martina
,
F.
,
Colegrove
,
P. A.
,
Williams
,
S. W.
, and
Meyer
,
J.
,
2015
, “
Microstructure of Interpass Rolled Wire+ Arc Additive Manufacturing Ti–6Al–4V Components
,”
Metall. Mater. Trans. A.
,
46
(
12
), pp.
6103
6118
.
13.
Wu
,
B.
,
Pan
,
Z.
,
Ding
,
D.
,
Cuiuri
,
D.
,
Li
,
H.
,
Xu
,
J.
, and
Norrish
,
J.
,
2018
, “
A Review of the Wire Arc Additive Manufacturing of Metals: Properties, Defects and Quality Improvement
,”
J. Manuf. Process.
,
35
(
1
), pp.
127
139
.
14.
Jin
,
W.
,
Zhang
,
C.
,
Jin
,
S.
,
Tian
,
Y.
,
Wellmann
,
D.
, and
Liu
,
W.
,
2020
, “
Wire Arc Additive Manufacturing of Stainless Steels: A Review
,”
Appl. Sci.
,
10
(
5
), p.
1563
.
15.
Zhao
,
H.
,
Zhang
,
G.
,
Yin
,
Z.
, and
Wu
,
L.
,
2011
, “
A 3d Dynamic Analysis of Thermal Behavior During Single-Pass Multi-layer Weld-Based Rapid Prototyping
,”
J. Mater. Process. Technol.
,
211
(
3
), pp.
488
495
.
16.
Garmendia
,
I.
,
Leunda
,
J.
,
Pujana
,
J.
, and
Lamikiz
,
A.
,
2018
, “
In-Process Height Control During Laser Metal Deposition Based on Structured Light 3D Scanning
,”
Procedia CIRP
,
68
(
1
), pp.
375
380
.
17.
Wang
,
Y.
,
Lu
,
J.
,
Zhao
,
Z.
,
Deng
,
W.
,
Han
,
J.
,
Bai
,
L.
,
Yang
,
X.
, and
Yao
,
J.
,
2021
, “
Active Disturbance Rejection Control of Layer Width in Wire Arc Additive Manufacturing Based on Deep Learning
,”
J. Manuf. Process.
,
67
(
1
), pp.
364
375
.
18.
Xiong
,
J.
,
Zhang
,
G.
,
Hu
,
J.
, and
Li
,
Y.
,
2013
, “
Forecasting Process Parameters for GMAW-Based Rapid Manufacturing Using Closed-Loop Iteration Based on Neural Network
,”
Int. J. Adv. Manuf. Technol.
,
69
(
1–4
), pp.
743
751
.
19.
Luan
,
H.
,
Grasso
,
M.
,
Colosimo
,
B. M.
, and
Huang
,
Q.
,
2019
, “
Prescriptive Data-Analytical Modeling of Laser Powder Bed Fusion Processes for Accuracy Improvement
,”
ASME J. Manuf. Sci. Eng.
,
141
(
1
), p.
011008
.
20.
Huang
,
Q.
,
Zhang
,
J.
,
Sabbaghi
,
A.
, and
Dasgupta
,
T.
,
2015
, “
Optimal Offline Compensation of Shape Shrinkage for Three-Dimensional Printing Processes
,”
IIE Trans.
,
47
(
5
), pp.
431
441
.
21.
Huang
,
Q.
,
2016
, “
An Analytical Foundation for Optimal Compensation of Three-Dimensional Shape Deformation in Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
138
(
6
), p.
061010
.
22.
Huang
,
Q.
,
Wang
,
Y.
,
Lyu
,
M.
, and
Lin
,
W.
,
2020
, “
Shape Deviation Generator—A Convolution Framework for Learning and Predicting 3-D Printing Shape Accuracy
,”
IEEE Trans. Autom. Sci. Eng.
,
17
(
3
), pp.
1486
1500
.
23.
Huang
,
Q.
,
Nouri
,
H.
,
Xu
,
K.
,
Chen
,
Y.
,
Sosina
,
S.
, and
Dasgupta
,
T.
,
2014
, “
Statistical Predictive Modeling and Compensation of Geometric Deviations of Three-Dimensional Printed Products
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061008
.
24.
Sabbaghi
,
A.
, and
Huang
,
Q.
,
2018
, “
Model Transfer Across Additive Manufacturing Processes Via Mean Effect Equivalence of Lurking Variables
,”
Ann. Appl. Stat.
,
12
(
4
), pp.
2409
2429
.
25.
Zhou
,
H.
,
Li
,
L.
, and
Zhu
,
H.
,
2013
, “
Tensor Regression With Applications in Neuroimaging Data Analysis
,”
J. Am. Stat. Assoc.
,
108
(
502
), pp.
540
552
(PMID: 24791032).
26.
Yue
,
X.
,
Yan
,
H.
,
Park
,
J. G.
,
Liang
,
Z.
, and
Shi
,
J.
,
2017
, “
A Wavelet-Based Penalized Mixed-Effects Decomposition for Multichannel Profile Detection of In-Line Raman Spectroscopy
,”
IEEE Trans. Autom. Sci. Eng.
,
15
(
3
), pp.
1258
1271
.
27.
Candès
,
E. J.
,
Li
,
X.
,
Ma
,
Y.
, and
Wright
,
J.
,
2011
, “
Robust Principal Component Analysis?
J. ACM
,
58
(
3
), pp.
1
37
.
28.
Mou
,
S.
,
Wang
,
A.
,
Zhang
,
C.
, and
Shi
,
J.
,
2021
, “
Additive Tensor Decomposition Considering Structural Data Information
,”
IEEE Trans. Autom. Sci. Eng.
, pp.
1
14
.
29.
Yan
,
H.
,
Paynabar
,
K.
, and
Shi
,
J.
,
2017
, “
Anomaly Detection in Images With Smooth Background Via Smooth-Sparse Decomposition
,”
Technometrics
,
59
(
1
), pp.
102
114
.
30.
Yue
,
X.
,
2019
, “
Data Decomposition for Analytics of Engineering Systems: Literature Review, Methodology Formulation, and Future Trends
,”
ASME 2019 14th International Manufacturing ASME 2019 14th International Manufacturing Science and Engineering Conference
,
Erie, PA
,
June 10–14
.
31.
Wikle
,
C.
,
Zammit-Mangion
,
A.
, and
Cressie
,
N.
,
2019
,
Spatio-Temporal Statistics With R
,
CRC Press
,
Boca Raton, FL
.
32.
Wood
,
S. N.
,
Pya
,
N.
, and
Säfken
,
B.
,
2016
, “
Smoothing Parameter and Model Selection for General Smooth Models
,”
J. Am. Stat. Assoc.
,
111
(
516
), pp.
1548
1563
.
33.
Wood
,
S.
,
2017
,
Generalized Additive Models: An Introduction With R
, 2nd ed.,
CRC Press
,
New York
.
34.
Wood
,
S. N.
,
Scheipl
,
F.
, and
Faraway
,
J. J.
,
2013
, “
Straightforward Intermediate Rank Tensor Product Smoothing in Mixed Models
,”
Stat. Comput.
,
23
(
3
), pp.
341
360
.
35.
Wood
,
S. N.
,
2011
, “
Fast Stable Restricted Maximum Likelihood and Marginal Likelihood Estimation of Semiparametric Generalized Linear Models
,”
J. R. Stat. Soc. (B)
,
73
(
1
), pp.
3
36
.
36.
Kammann
,
E.
, and
Wand
,
M. P.
,
2003
, “
Geoadditive Models
,”
J. R. Stat. Soc. Ser. C (Appl. Stat.)
,
52
(
1
), pp.
1
18
.
37.
Rasmussen
,
C.
, and
Williams
,
C.
,
2006
,
Gaussian Processes for Machine Learning
,
MIT Press
,
Cambridge, MA
.
38.
Ramsay
,
T. O.
,
Burnett
,
R. T.
, and
Krewski
,
D.
,
2003
, “
The Effect of Concurvity in Generalized Additive Models Linking Mortality to Ambient Particulate Matter
,”
Epidemiology
,
14
(
1
), pp.
18
23
.
39.
Luan
,
H.
,
Post
,
B. K.
, and
Huang
,
Q.
,
2017
, “
Statistical Process Control of In-Plane Shape Deformation for Additive Manufacturing
,”
2017 13th IEEE Conference on Automation Science and Engineering (CASE)
,
Xi'an, China
,
Aug. 20–23
, pp.
1274
1279
.
You do not currently have access to this content.