Abstract

Laser-based powder bed fusion (L-PBF) of AlSi10Mg can be used to fabricate complex, light-weight structures with high thermal conductivity. Much effort has gone into investigating the mechanical behavior of L-PBF components; however, few studies investigated their thermal properties. This investigation characterizes the effect of process parameters on the relative density and thermal conductivity of L-PBF AlSi10Mg. Exposure time, laser power, pointwise distance, and build orientation were examined. Results show that changing these parameters can affect the thermal conductivity by up to 22%. For example, build orientation and pointwise distance influenced the thermal conductivity by 12.9% and 10%, respectively. As the pointwise distance increased, both the conductivity and the distance between the melt pool boundaries decreased, whereas the laser power had a negligible effect on both. The effect of exposure time was mainly dependent on the pointwise distance. It is shown that thermal conductivity is not only related to the relative density of the samples, but the number of the melt pool boundaries in the microstructure also plays a significant role in interrupting the heat flow. A new factor is introduced to account for the number of melt pool boundaries per unit length in the direction of heat flow, which helps to explain the variation in thermal conductivity for samples manufactured with high energy densities which had almost negligible difference in relative density.

References

1.
Jafari
,
D.
, and
Wits
,
W. W.
,
2018
, “
The Utilization of Selective Laser Melting Technology on Heat Transfer Devices for Thermal Energy Conversion Applications: A Review
,”
Renew. Sustain. Energy Rev.
,
91
, pp.
420
442
.
2.
Biffi
,
C. A.
,
Fiocchi
,
J.
,
Bassani
,
P.
, and
Tuissi
,
A.
,
2018
, “
Continuous Wave Vs Pulsed Wave Laser Emission in Selective Laser Melting of AlSi10Mg Parts With Industrial Optimized Process Parameters: Microstructure and Mechanical Behaviour
,”
Addit. Manuf.
,
24
, pp.
639
646
.
3.
Arie
,
M. A.
,
Shooshtari
,
A. H.
, and
Ohadi
,
M. M.
,
2018
, “
Experimental Characterization of an Additively Manufactured Heat Exchanger for Dry Cooling of Power Plants
,”
Appl. Therm. Eng.
,
129
, pp.
187
198
.
4.
Saltzman
,
D.
,
Bichnevicius
,
M.
,
Lynch
,
S.
,
Simpson
,
T. W.
,
Reutzel
,
E. W.
,
Dickman
,
C.
, and
Martukanitz
,
R.
,
2018
, “
Design and Evaluation of an Additively Manufactured Aircraft Heat Exchanger
,”
Appl. Therm. Eng.
,
138
, pp.
254
263
.
5.
Fasano
,
M.
,
Ventola
,
L.
,
Calignano
,
F.
,
Manfredi
,
D.
,
Ambrosio
,
E. P.
,
Chiavazzo
,
E.
, and
Asinari
,
P.
,
2016
, “
Passive Heat Transfer Enhancement by 3D Printed Pitot Tube Based Heat Sink
,”
Int. Commun. Heat Mass Transfer
,
74
, pp.
36
39
.
6.
Ho
,
J. Y.
,
Wong
,
K. K.
,
Leong
,
K. C.
, and
Wong
,
T. N.
,
2017
, “
Convective Heat Transfer Performance of Airfoil Heat Sinks Fabricated by Selective Laser Melting
,”
Int. J. Therm. Sci.
,
114
, pp.
213
228
.
7.
da Silva
,
R. P. P.
,
Mortean
,
M. V. V.
,
de Paiva
,
K. V.
,
Beckedorff
,
L. E.
,
Oliveira
,
J. L. G.
,
Brandão
,
F. G.
,
Monteiro
,
A. S.
, et al
,
2021
, “
Thermal and Hydrodynamic Analysis of a Compact Heat Exchanger Produced by Additive Manufacturing
,”
Appl. Therm. Eng.
,
193
, p.
116973
.
8.
Wong
,
K. K.
, and
Leong
,
K. C.
,
2018
, “
Saturated Pool Boiling Enhancement Using Porous Lattice Structures Produced by Selective Laser Melting
,”
Int. J. Heat Mass Transfer
,
121
, pp.
46
63
.
9.
Ho
,
J. Y.
,
Wong
,
K. K.
, and
Leong
,
K. C.
,
2016
, “
Saturated Pool Boiling of FC-72 From Enhanced Surfaces Produced by Selective Laser Melting
,”
Int. J. Heat Mass Transfer
,
99
, pp.
107
121
.
10.
Septet
,
C.
,
El Achkar
,
G.
,
Le Metayer
,
O.
, and
Hugo
,
J. M.
,
2020
, “
Experimental Investigation of Two-Phase Liquid–Vapor Flows in Additive Manufactured Heat Exchanger
,”
Appl. Therm. Eng.
,
179
, p.
115638
.
11.
Wong
,
K. K.
, and
Leong
,
K. C.
,
2019
, “
Nucleate Flow Boiling Enhancement on Engineered Three-Dimensional Porous Metallic Structures in FC-72
,”
Appl. Therm. Eng.
,
159
, p.
113846
.
12.
Ameli
,
M.
,
Agnew
,
B.
,
Leung
,
P. S.
,
Ng
,
B.
,
Sutcliffe
,
C. J.
,
Singh
,
J.
, and
McGlen
,
R.
,
2013
, “
A Novel Method for Manufacturing Sintered Aluminium Heat Pipes (SAHP)
,”
Appl. Therm. Eng.
,
52
(
2
), pp.
498
504
.
13.
Wits
,
W. W.
, and
Jafari
,
D.
,
2018
, “
Experimental Performance of a 3D-Printed Hybrid Heat Pipe-Thermosyphon for Cooling of Power Electronics
,”
THERMINIC 2018—24th International Workshop on Thermal Investigations ICs and Systems Proc.
,
Stockholm, Sweden
,
Sept. 26–28
, pp.
1
6
.
14.
Chaudhari
,
A.
,
Ekade
,
P.
, and
Krishnan
,
S.
,
2019
, “
Experimental Investigation of Heat Transfer and Fluid Flow in Octet-Truss Lattice Geometry
,”
Int. J. Therm. Sci.
,
143
, pp.
64
75
.
15.
Kirsch
,
K. L.
, and
Thole
,
K. A.
,
2018
, “
Experimental Investigation of Numerically Optimized Wavy Microchannels Created Through Additive Manufacturing
,”
ASME J. Turbomach.
,
140
(
2
), p.
021002
.
16.
Olleak
,
A.
, and
Xi
,
Z.
,
2020
, “
Part-Scale Finite Element Modeling of the Selective Laser Melting Process With Layer-Wise Adaptive Remeshing for Thermal History and Porosity Prediction
,”
ASME J. Manuf. Sci. Eng.
,
142
(
12
), p.
121006
.
17.
Reza Yavari
,
M.
,
Williams
,
R. J.
,
Cole
,
K. D.
,
Hooper
,
P. A.
, and
Rao
,
P.
,
2020
, “
Thermal Modeling in Metal Additive Manufacturing Using Graph Theory: Experimental Validation With Laser Powder Bed Fusion Using In Situ Infrared Thermography Data
,”
ASME J. Manuf. Sci. Eng.
,
142
(
12
), p.
121005
.
18.
Afrasiabi
,
M.
,
Lüthi
,
C.
,
Bambach
,
M.
, and
Wegener
,
K.
,
2021
, “
Multi-Resolution SPH Simulation of a Laser Powder Bed Fusion Additive Manufacturing Process
,”
Appl. Sci.
,
11
(
7
), p.
2962
.
19.
Lee
,
Y. S.
, and
Zhang
,
W.
,
2016
, “
Modeling of Heat Transfer, Fluid Flow and Solidification Microstructure of Nickel-Base Superalloy Fabricated by Laser Powder Bed Fusion
,”
Addit. Manuf.
,
12
, pp.
178
188
.
20.
Khairallah
,
S. A.
, and
Anderson
,
A.
,
2014
, “
Mesoscopic Simulation Model of Selective Laser Melting of Stainless Steel Powder
,”
J. Mater. Process. Technol.
,
214
(
11
), pp.
2627
2636
.
21.
Simmons
,
J. C.
,
Chen
,
X.
,
Azizi
,
A.
,
Daeumer
,
M. A.
,
Zavalij
,
P. Y.
,
Zhou
,
G.
, and
Schiffres
,
S. N.
,
2020
, “
Influence of Processing and Microstructure on the Local and Bulk Thermal Conductivity of Selective Laser Melted 316L Stainless Steel
,”
Addit. Manuf.
,
32
, p.
100996
.
22.
Wang
,
Y.
, and
Shi
,
J.
,
2020
, “
Effect of Hot Isostatic Pressing on Nanoparticles Reinforced AlSi10Mg Produced by Selective Laser Melting
,”
Mater. Sci. Eng. A.
,
788
, pp.
1
11
.
23.
Aboulkhair
,
N. T.
,
Everitt
,
N. M.
,
Ashcroft
,
I.
, and
Tuck
,
C.
,
2014
, “
Reducing Porosity in AlSi10Mg Parts Processed by Selective Laser Melting
,”
Addit. Manuf.
,
1
, pp.
77
86
.
24.
Li
,
X.
, and
Tan
,
W.
,
2021
, “
Numerical Modeling of Powder Gas Interaction Relative to Laser Powder Bed Fusion Process
,”
ASME J. Manuf. Sci. Eng.
,
143
(
5
), p.
054502
.
25.
EOS GmbH-Electro Optical Systems
,
2014
, “
Material Data Sheet: EOS Aluminium AlSi10Mg
”, pp.
1
5
.
26.
Yang
,
P.
,
Deibler
,
L. A.
,
Bradley
,
D. R.
,
Stefan
,
D. K.
, and
Carroll
,
J. D.
,
2018
, “
Microstructure Evolution and Thermal Properties of an Additively Manufactured, Solution Treatable AlSi10Mg Part
,”
J. Mater. Res.
,
33
(
23
), pp.
4040
4052
.
27.
Strumza
,
E.
,
Yeheskel
,
O.
, and
Hayun
,
S.
,
2019
, “
The Effect of Texture on the Anisotropy of Thermophysical Properties of Additively Manufactured AlSi10Mg
,”
Addit. Manuf.
,
29
, p.
100762
.
28.
Sélo
,
R. R. J.
,
Catchpole-Smith
,
S.
,
Maskery
,
I.
,
Ashcroft
,
I.
, and
Tuck
,
C.
,
2020
, “
On the Thermal Conductivity of AlSi10Mg and Lattice Structures Made by Laser Powder Bed Fusion
,”
Addit. Manuf.
,
34
, p.
101214
.
29.
Silbernagel
,
C.
,
Ashcroft
,
I.
,
Dickens
,
P.
, and
Galea
,
M.
,
2018
, “
Electrical Resistivity of Additively Manufactured AlSi10Mg for Use in Electric Motors
,”
Addit. Manuf.
,
21
, pp.
395
403
.
30.
Li
,
K.
,
Zhang
,
J.
,
Chen
,
X.
,
Yin
,
Y.
,
He
,
Y.
,
Zhou
,
Z.
, and
Guan
,
R.
,
2020
, “
Microstructure Evolution of Eutectic Si in Al–7Si Binary Alloy by Heat Treatment and Its Effect on Enhancing Thermal Conductivity
,”
J. Mater. Res. Technol.
,
9
(
4
), pp.
8780
8786
.
31.
Hirata
,
T.
,
Kimura
,
T.
, and
Nakamoto
,
T.
,
2020
, “
Effects of Hot Isostatic Pressing and Internal Porosity on the Performance of Selective Laser Melted AlSi10Mg Alloys
,”
Mater. Sci. Eng. A
,
772
, p.
138713
.
32.
Merino
,
J.
,
Ruvalcaba
,
B.
,
Varela
,
J.
,
Arrieta
,
E.
,
Murr
,
L. E.
,
Wicker
,
R. B.
,
Benedict
,
M.
, and
Medina
,
F.
,
2021
, “
Multiple, Comparative Heat Treatment and Aging Schedules for Controlling the Microstructures and Mechanical Properties of Laser Powder Bed Fusion Fabricated AlSi10Mg Alloy
,”
J. Mater. Res. Technol.
,
13
, pp.
669
685
.
33.
Kim
,
M. S.
,
2021
, “
Effects of Processing Parameters of Selective Laser Melting Process on Thermal Conductivity of AlSi10Mg Alloy
,”
Materials
,
14
(
9
), p.
2410
.
34.
Butler
,
C.
,
Babu
,
S.
,
Lundy
,
R.
,
O’Reilly Meehan
,
R.
,
Punch
,
J.
, and
Jeffers
,
N.
,
2021
, “
Effects of Processing Parameters and Heat Treatment on Thermal Conductivity of Additively Manufactured AlSi10Mg by Selective Laser Melting
,”
Mater. Charact.
,
173
, p.
110945
.
35.
Snyder
,
J. C.
, and
Thole
,
K. A.
,
2020
, “
Understanding Laser Powder Bed Fusion Surface Roughness
,”
ASME J. Manuf. Sci. Eng.
,
142
(
7
), p.
071003
.
36.
“Data Sheet: AlSi10Mg-0403 (400 W) Powder for Additive Manufacturing: AMPD AM 3d Printing Metal Powder AM250,” https://www.renishaw.com/media/pdf/en/0c48b4800c17480393f17ceaacb4ecdb.pdf, Accessed March 1, 2022.
37.
Elkholy
,
A.
,
Rouby
,
M.
, and
Kempers
,
R.
,
2019
, “
Characterization of the Anisotropic Thermal Conductivity of Additively Manufactured Components by Fused Filament Fabrication
,”
Prog. Addit. Manuf.
,
4
(
4
), pp.
497
515
.
38.
ASTM C177
,
2013
, “
Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate
,”
ASTM International
, pp.
1
23
.
39.
Elkholy
,
A.
, and
Kempers
,
R.
,
2022
, “
An Accurate Steady-State Approach for Characterizing the Thermal Conductivity of Additively Manufactured Polymer Composites
,”
Case Stud. Therm. Eng.
,
31
, p.
101829
.
40.
Abràmoff
,
M. D.
,
Magalhães
,
P. J.
, and
Ram
,
S. J.
,
2004
, “
Image Processing With ImageJ
,”
Biophotonics Int.
,
11
(
7
), pp.
36
41
.
41.
King
,
W. E.
,
Barth
,
H. D.
,
Castillo
,
V. M.
,
Gallegos
,
G. F.
,
Gibbs
,
J. W.
,
Hahn
,
D. E.
,
Kamath
,
C.
, and
Rubenchik
,
A. M.
,
2014
, “
Observation of Keyhole-Mode Laser Melting in Laser Powder-Bed Fusion Additive Manufacturing
,”
J. Mater. Process. Technol.
,
214
(
12
), pp.
2915
2925
.
42.
Eagar
,
T. W.
, and
Tsai
,
N. S.
,
1983
, “
Temperature Fields Produced By Traveling Distributed Heat Sources.
,”
Weld. J.
,
62
(
12
), pp.
346
355
.
43.
Karimi
,
P.
,
Raza
,
T.
,
Andersson
,
J.
, and
Svensson
,
L. E.
,
2018
, “
Influence of Laser Exposure Time and Point Distance on 75-Μm-Thick Layer of Selective Laser Melted Alloy 718
,”
Int. J. Adv. Manuf. Technol.
,
94
(
5–8
), pp.
2199
2207
.
44.
Li
,
Y.
, and
Gu
,
D.
,
2014
, “
Parametric Analysis of Thermal Behavior During Selective Laser Melting Additive Manufacturing of Aluminum Alloy Powder
,”
Mater. Des.
,
63
, pp.
856
867
.
45.
Du
,
Y.
,
You
,
X.
,
Qiao
,
F.
,
Guo
,
L.
, and
Liu
,
Z.
,
2019
, “
A Model for Predicting the Temperature Field During Selective Laser Melting
,”
Results Phys.
,
12
, pp.
52
60
.
46.
Additive, C.
,
2019
, “TECHNICAL DATA SHEET CT PowderRange AlSi10Mg.”
47.
Scipioni Bertoli
,
U.
,
Wolfer
,
A. J.
,
Matthews
,
M. J.
,
Delplanque
,
J. P. R.
, and
Schoenung
,
J. M.
,
2017
, “
On the Limitations of Volumetric Energy Density as a Design Parameter for Selective Laser Melting
,”
Mater. Des.
,
113
, pp.
331
340
.
48.
Dong
,
H.
,
Wen
,
B.
, and
Melnik
,
R.
,
2014
, “
Relative Importance of Grain Boundaries and Size Effects in Thermal Conductivity of Nanocrystalline Materials
,”
Sci. Rep.
,
4
(
1
), p.
7037
.
49.
Van Cauwenbergh
,
P.
,
Samaee
,
V.
,
Thijs
,
L.
,
Nejezchlebová
,
J.
,
Sedlák
,
P.
,
Iveković
,
A.
,
Schryvers
,
D.
,
Van Hooreweder
,
B.
, and
Vanmeensel
,
K.
,
2021
, “
Unravelling the Multi-Scale Structure–Property Relationship of Laser Powder Bed Fusion Processed and Heat-Treated AlSi10Mg
,”
Sci. Rep.
,
11
(
1
), pp.
1
15
.
50.
Yang
,
P.
,
Rodriguez
,
M. A.
,
Deibler
,
L. A.
,
Jared
,
B. H.
,
Griego
,
J.
,
Kilgo
,
A.
,
Allen
,
A.
, and
Stefan
,
D. K.
,
2018
, “
Effect of Thermal Annealing on Microstructure Evolution and Mechanical Behavior of an Additive Manufactured AlSi10Mg Part
,”
J. Mater. Res.
,
33
(
12
), pp.
1701
1712
.
You do not currently have access to this content.