Abstract

Additive manufacturing (AM) techniques, such as fused deposition modeling (FDM), are able to fabricate physical components from three-dimensional (3D) digital models through the sequential deposition of material onto a print bed in a layer-by-layer fashion. In FDM and many other AM techniques, it is critical that the part adheres to the bed during printing. After printing, however, excessive bed adhesion can lead to part damage or prevent automated part removal. In this work, we validate a novel testing method that quickly and cheaply evaluates bed adhesion without constraints on part geometry. Using this method, we study the effect of bed temperature on the peak removal force for polylactic acid (PLA) parts printed on bare borosilicate glass and polyimide (PI)-coated beds. In addition to validating conventional wisdom that bed adhesion is maximized between 60 and 70 °C (140 and 158 °F), we observe that cooling the bed below 40 °C (104 °F), as is commonly done to facilitate part removal, has minimal additional benefit. Counterintuitively, we find that heating the bed after printing is often a more efficient process for facile part removal. In addition to introducing a general method for measuring and optimizing bed adhesion via bed temperature modulation, these results can be used to accelerate the production and testing of AM components in printer farms and autonomous research systems.

References

1.
Huang
,
Y.
,
Leu
,
M. C.
,
Mazumder
,
J.
, and
Donmez
,
A.
,
2015
, “
Additive Manufacturing: Current State, Future Potential, Gaps and Needs, and Recommendations
,”
ASME J. Manuf. Sci. Eng. Trans.
,
137
(
1
), pp.
1
10
. 10.1115/1.4028725
2.
ASTM International
,
2013
, “
F2792-12a—Standard Terminology for Additive Manufacturing Technologies
,”
Rapid Manuf. Assoc.
3.
Bellini
,
A.
,
Güçeri
,
S.
, and
Bertoldi
,
M.
,
2004
, “
Liquefier Dynamics in Fused Deposition
,”
ASME J. Manuf. Sci. Eng. Trans.
,
126
(
2
), pp.
237
246
. 10.1115/1.1688377
4.
Beaman
,
J. J.
,
Bourell
,
D. L.
,
Seepersad
,
C. C.
, and
Kovar
,
D.
,
2020
, “
Additive Manufacturing Review: Early Past to Current Practice
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), pp.
1
20
. 10.1115/1.4048193
5.
Krotkỳ
,
J.
,
Honzíková
,
J.
, and
Moc
,
P.
,
2016
, “
Deformation of Print PLA Material Depending on the Temperature of Reheating Printing Pad
,”
Manuf. Technol.
,
16
(
1
), pp.
136
140
. 10.21062/ujep/x.2016/a/1213-2489/mt/16/1/136
6.
Khatwani
,
J.
, and
Srivastava
,
V.
,
2018
, “
Effect of Process Parameters on Mechanical Properties of Solidified PLA Parts Fabricated by 3D Printing Process
,”
3D Print. Addit. Manuf. Technol.
, pp.
95
104
. 10.1007/978-981-13-0305-0_9
7.
Arbeiter
,
F.
,
Spoerk
,
M.
,
Wiener
,
J.
,
Gosch
,
A.
, and
Pinter
,
G.
,
2018
, “
Fracture Mechanical Characterization and Lifetime Estimation of Near-Homogeneous Components Produced by Fused Filament Fabrication
,”
Polym. Test.
,
66
, pp.
105
113
. 10.1016/j.polymertesting.2018.01.002
8.
Abbott
,
A. C.
,
Tandon
,
G. P.
,
Bradford
,
R. L.
,
Koerner
,
H.
, and
Baur
,
J. W.
,
2018
, “
Process-Structure-Property Effects on ABS Bond Strength in Fused Filament Fabrication
,”
Addit. Manuf.
,
19
, pp.
29
38
. 10.1016/j.addma.2017.11.002
9.
Ang
,
K. C.
,
Leong
,
K. F.
,
Chua
,
C. K.
, and
Chandrasekaran
,
M.
,
2006
, “
Investigation of the Mechanical Properties and Porosity Relationships in Fused Deposition Modelling-Fabricated Porous Structures
,”
Rapid Prototyp. J.
,
12
(
2
), pp.
100
105
. 10.1108/13552540610652447
10.
Ahn
,
S. H.
,
Montero
,
M.
,
Odell
,
D.
,
Roundy
,
S.
, and
Wright
,
P. K.
,
2002
, “
Anisotropic Material Properties of Fused Deposition Modeling ABS
,”
Rapid Prototyp. J.
,
8
(
4
), pp.
248
257
. 10.1108/13552540210441166
11.
Thrimurthulu
,
K.
,
Pandey
,
P. M.
, and
Reddy
,
N. V.
,
2004
, “
Optimum Part Deposition Orientation in Fused Deposition Modeling
,”
Int. J. Mach. Tools Manuf.
,
44
(
6
), pp.
585
594
. 10.1016/j.ijmachtools.2003.12.004
12.
Devicharan
,
R.
, and
Garg
,
R.
,
2018
, “
Optimization of the Print Quality by Controlling the Process Parameters on 3D Printing Machine
,”
3D Print. Addit. Manuf. Technol.
, pp.
187
194
. 10.1007/978-981-13-0305-0_16
13.
Singh
,
K.
,
2018
, “
Experimental Study to Prevent the Warping of 3D Models in Fused Deposition Modeling
,”
Int. J. Plast. Technol.
,
22
(
1
), pp.
177
184
. 10.1007/s12588-018-9206-y
14.
Spoerk
,
M.
,
Gonzalez-Gutierrez
,
J.
,
Lichal
,
C.
,
Cajner
,
H.
,
Berger
,
G. R.
,
Schuschnigg
,
S.
,
Cardon
,
L.
, and
Holzer
,
C.
,
2018
, “
Optimisation of the Adhesion of Polypropylene-Based Materials During Extrusion-Based Additive Manufacturing
,”
Polymers
,
10
(
5
), p.
490
. 10.3390/polym10050490
15.
Płaczek
,
D.
,
2019
, “
Adhesion Between the Bed and Component Manufactured in FDM Technology Using Selected Types of Intermediary Materials
,”
MATEC Web Conf.
,
290
, p.
01012
. 10.1051/matecconf/201929001012
16.
Teliskova
,
M.
,
Torek
,
J.
,
Cmorej
,
T.
,
Kocisko
,
M.
, and
Petrus
,
J.
,
2017
, “
Adjustments of RepRap Type Printer Workbench
,”
2017 4th International Conference on Industrial Engineering and Applications
,
Nagoya, Japan
,
Apr. 21–23
,
ICIEA
, pp.
15
19
.
17.
Spoerk
,
M.
,
Gonzalez-Gutierrez
,
J.
,
Sapkota
,
J.
,
Schuschnigg
,
S.
, and
Holzer
,
C.
,
2018
, “
Effect of the Printing Bed Temperature on the Adhesion of Parts Produced by Fused Filament Fabrication
,”
Plast. Rubber Compos.
,
47
(
1
), pp.
17
24
. 10.1080/14658011.2017.1399531
18.
Gongora
,
A. E.
,
Xu
,
B.
,
Perry
,
W.
,
Okoye
,
C.
,
Riley
,
P.
,
Reyes
,
K. G.
,
Morgan
,
E. F.
, and
Brown
,
K. A.
,
2020
, “
A Bayesian Experimental Autonomous Researcher for Mechanical Design
,”
Sci. Adv.
,
6
(
15
), p.
eaaz1708
. 10.1126/sciadv.aaz1708
19.
Gongora
,
A. E.
,
Snapp
,
K. L.
,
Whiting
,
E.
,
Riley
,
P.
,
Reyes
,
K. G.
,
Morgan
,
E. F.
, and
Brown
,
K. A.
,
2021
, “
Using Simulation to Accelerate Autonomous Experimentation (AE): A Case Study Using Mechanics
,”
SSRN Electron. J.
20.
Collaborative Robots Help Triples 3D Printing Production at Voodoo Manufacturing
.” https://www.universal-robots.com/case-stories/voodoo-manufacturing/, Accessed March 4, 2020.
21.
Aravind
,
A. U.
,
Bhagat
,
A. R.
, and
Radhakrishnan
,
R.
,
2020
, “
A Novel Use of Twisted Continuous Carbon Fibers in Additive Manufacturing of Composites
,”
Mater. Today Proc.
22.
Marasso
,
S. L.
,
Cocuzza
,
M.
,
Bertana
,
V.
,
Perrucci
,
F.
,
Tommasi
,
A.
,
Ferrero
,
S.
,
Scaltrito
,
L.
, and
Pirri
,
C. F.
,
2018
, “
PLA Conductive Filament for 3D Printed Smart Sensing Applications
,”
Rapid Prototyp. J.
,
24
(
4
), pp.
739
743
. 10.1108/RPJ-09-2016-0150
23.
Lee
,
D.
,
Lee
,
Y.
,
Lee
,
K.
,
Ko
,
Y.
, and
Kim
,
N.
,
2019
, “
Development and Evaluation of a Distributed Recycling System for Making Filaments Reused in Three-Dimensional Printers
,”
ASME J. Manuf. Sci. Eng. Trans.
,
141
(
2
), p.
021007
. 10.1115/1.4041747
You do not currently have access to this content.