Abstract

This paper presents the machining of integral blade rotors (IBRs) made in Ti6Al4V using CO2 as cryogenic cooling. This kind of component is typical in gas turbines, pumps, and other rotary machines. A flank milling technique using polycrystalline diamond (PCD) tools and CO2+minimum quantity lubrication (MQL), denominated CryoMQL, is here presented as an alternative to conventional oil emulsions. The proposed approach implies a balance between technical and environmental issues. Cryogenics makes feasible the use of PCD tools avoiding problems derived from the reactivity of Ti6Al4V alloy with this type of cutting tool, which is directly related to cutting temperature. One key aspect is that CO2 has to be supplied and injected onto the cutting zone avoiding the risks of dry-ice formation, and the consequent clogging of both pipes and nozzles. For this purpose, a new device for CO2 delivery was developed, using gas and liquid CO2 simultaneously.

References

1.
González-Barrio
,
H.
,
Calleja-Ochoa
,
A.
,
Lamikiz
,
A.
, and
López de Lacalle
,
L. N.
,
2020
, “
Manufacturing Processes of Integral Blade Rotors for Turbomachinery
,”
Appl. Sci.
,
10
(
3063
), pp.
3
22
. 10.3390/app10093063
2.
Artetxe
,
E.
,
González
,
H.
,
Calleja
,
A.
,
Fernández-Valdivielso
,
A.
,
Polvorosa
,
R.
,
Lamikiz
,
A.
, and
López de Lacalle
,
L. N.
,
2016
, “
Optimised Methodology for Aircraft Engine IBRs Five-Axis Machining Process
,”
Int. J. Mechatron. Manuf. Syst.
,
9
(
4
), pp.
385
401
. 10.1504/IJMMS.2016.082873
3.
Morishige
,
K.
, and
Takeuchi
,
Y.
,
1997
, “
5-Axis Control Rough Cutting of an Impeller With Efficiency and Accuracy
,”
Proceedings of the International Conference on Robotics and Automation
,
Albuquerque, NM
,
Apr. 20–25
, vol.
55
, pp.
1241
1246
.
4.
Abele
,
E.
,
Hasenfratz
,
C.
,
Praetzas
,
C.
,
Stark
,
C.
,
Kannwischer
,
M.
, and
Wichlas
,
N.
,
2017
, “
Process Design for Rough Machining of Ti6Al4V Integral Components
,”
Procedia Manuf.
,
14
, pp.
118
127
. 10.1016/j.promfg.2017.11.014
5.
Senatore
,
J.
,
Landon
,
Y.
, and
Rubio
,
W.
,
2008
, “
Analytical Estimation of Error in Flank Milling of Ruled Surfaces
,”
Comput.-Aided Des.
,
40
(
5
), pp.
595
603
. 10.1016/j.cad.2008.02.007
6.
Bo
,
P.
,
Bartoň
,
M.
,
Plakhotnik
,
D.
, and
Pottmann
,
H.
,
2016
, “
Towards Efficient 5-Axis Flank CNC Machining of Free-Form Surfaces via Fitting Envelopes of Surfaces of Revolution
,”
Comput.-Aided Des.
,
79
, pp.
1
11
. 10.1016/j.cad.2016.04.004
7.
Calleja
,
A.
,
Bo
,
P.
,
González
,
H.
,
Bartoň
,
M.
, and
López de Lacalle
,
L. N.
,
2018
, “
Highly Accurate 5-Axis Flank CNC Machining With Conical Tools
,”
Int. J. Adv. Manuf. Technol.
,
97
(
5–8
), pp.
1605
1615
. 10.1007/s00170-018-2033-7
8.
Bo
,
P.
, and
Bartoň
,
M.
,
2019
, “
On Initialization of Milling Paths for 5-Axis Flank CNC Machining of Free-Form Surfaces With General Milling Tools
,”
Comput. Aided Geom. Des.
,
71
, pp.
30
42
. 10.1016/j.cagd.2019.04.012
9.
Petrilli
R.
,
2012
,
Super Abrasive Machining for PM, Metal-Powder.net; Elsevier Ltd., Amsterdam, The Netherlands
.
10.
González
,
H.
,
Calleja
,
A.
,
Pereira
,
O.
,
Ortega
,
N.
,
López de Lacalle
,
L. N.
, and
Barton
,
M.
,
2018
, “
Super Abrasive Machining of Integral Rotary Components Using Grinding Flank Tools
,”
Metals
,
8
(
1
), p.
24
. 10.3390/met8010024
11.
González
,
H.
,
Pereira
,
O.
,
Fernández-Valdivielso
,
A.
,
López de Lacalle
,
L. N.
, and
Calleja
,
A.
,
2018
, “
Comparison of Flank Super Abrasive Machining vs. Flank Milling on Inconel® 718 Surfaces
,”
Materials
,
11
(
9
), p.
1638
. 10.3390/ma11091638
12.
Klocke
,
F.
,
Schmitt
,
R.
,
Zeis
,
M.
,
Heidemanns
,
L.
,
Kerkhoff
,
J.
,
Heinen
,
D.
, and
Klink
,
A.
,
2015
, “
Technological and Economical Assessment of Alternative Process Chains for Blisk Manufacture
,”
Procedia CIRP
,
35
, pp.
67
72
. 10.1016/j.procir.2015.08.052
13.
Raynor
,
P.
,
Kim
,
S.
, and
Bhattacharya
,
M.
,
2005
, “
Mist Generation From Metalworking Fluids Formulated Using Vegetable Oils
,”
Ann. Occup. Hyg.
,
49
(
4
), pp.
283
293
. 10.1093/annhyg/meh092
14.
Klocke
,
F.
, and
Eisenblätter
,
G.
,
1997
, “
Dry Cutting
,”
CIRP Ann.
,
46
(
2
), pp.
519
526
. 10.1016/S0007-8506(07)60877-4
15.
Pusavec
,
F.
,
Kramar
,
D.
,
Krajnik
,
P.
, and
Kopac
,
J.
,
2010
, “
Transitioning to Sustainable Production—Part II: Evaluation of Sustainable Machining Technologies
,”
J. Cleaner Prod.
,
18
(
12
), pp.
1211
1221
. 10.1016/j.jclepro.2010.01.015
16.
Pusavec
,
F.
,
Krajnik
,
P.
, and
Kopac
,
J.
,
2010
, “
Transitioning to Sustainable Production—Part I: Application on Machining Technologies
,”
J. Cleaner Prod.
,
18
(
2
), pp.
174
184
. 10.1016/j.jclepro.2009.08.010
17.
Pereira
,
O.
,
Rodríguez
,
A.
,
Fernández-Abia
,
A. I.
,
Barreiro
,
J.
, and
López de Lacalle
,
L. N.
,
2016
, “
Cryogenic and Minimum Quantity Lubrication for an Eco-Efficiency Turning of AISI 304
,”
J. Cleaner Prod.
,
139
, pp.
440
449
. 10.1016/j.jclepro.2016.08.030
18.
Hong
,
S. Y.
, and
Ding
,
Y.
,
2001
, “
Cooling Approaches and Cutting Temperatures in Cryogenic Machining of Ti6Al4V
,”
Int. J. Mach. Tools Manuf.
,
41
(
10
), pp.
1417
1437
. 10.1016/S0890-6955(01)00026-8
19.
Hong
,
S. Y.
,
Markus
,
I.
, and
Jeong
,
W.
,
2001
, “
New Cooling Approach and Tool Life Improvement in Cryogenic Machining of Titanium Alloy Ti6Al4V
,”
Int. J. Mach. Tools Manuf.
,
41
(
15
), pp.
2245
2260
. 10.1016/S0890-6955(01)00041-4
20.
Hong
,
S. Y.
,
Ding
,
Y.
, and
Jeong
,
J.
,
2002
, “
Experimental Evaluation of Friction Coefficient and Liquid Nitrogen Lubrication Effect in Cryogenic Machining
,”
Mach. Sci. Technol.
,
6
(
2
), pp.
235
250
. 10.1081/MST-120005958
21.
Hong
,
S. Y.
,
2007
, “
Lubrication Mechanism of LN2 in Ecological Cryogenic Machining
,”
Mach. Sci. Technol.
,
10
(
1
), pp.
133
155
. 10.1080/10910340500534324
22.
Klocke
,
F.
,
Krämer
,
A.
,
Sangermann
,
H.
, and
Lung
,
D.
,
2012
, “
Thermo-Mechanical Tool Load During High Performance Cutting of Hard-to-Cut Materials
,”
Procedia CIRP
,
1
, pp.
295
300
. 10.1016/j.procir.2012.04.053
23.
Krämer
,
A.
,
Klocke
,
F.
,
Sangermann
,
H.
, and
Lung
,
D.
,
2013
, “
Influence of the Lubricoolant Strategy on Thermo-Mechanical Tool Load
,”
CIRP J. Manuf. Sci. Technol.
,
7
(
1
), pp.
40
47
. 10.1016/j.cirpj.2013.09.001
24.
Supekar
,
S. D.
,
Clarens
,
A. F.
,
Stephenson
,
D. A.
, and
Skerlos
,
S. J.
,
2012
, “
Performance of Supercritical Carbon Dioxide Sprays as Coolants and Lubricants in Representative Metalworking Operations
,”
J. Mater. Process. Technol.
,
212
(
12
), pp.
2652
2658
. 10.1016/j.jmatprotec.2012.07.020
25.
Strano
,
M.
,
Chiappini
,
E.
,
Tirelli
,
S.
,
Albertelli
,
P.
, and
Monn
,
M.
,
2013
, “
Comparison of Ti6Al4V Machining Forces and Tool Life for Cryogenic Versus Conventional Cooling
,”
J. Eng. Manuf.
,
227
(
9
), pp.
1403
1408
. 10.1177/0954405413486635
26.
Machai
,
C.
,
Iqbal
,
A.
,
Biermann
,
D.
,
Upmeier
,
T.
, and
Schumann
,
S.
,
2013
, “
On the Effects of Cutting Speed and Cooling Methodologies in Grooving Operation of Various Tempers of β-Titanium Alloy
,”
J. Mater. Process. Technol.
,
213
(
7
), pp.
1027
1037
. 10.1016/j.jmatprotec.2013.01.021
27.
Bergs
,
T.
,
Pušavec
,
F.
,
Koch
,
M.
,
Grguraš
,
D.
,
Döbbeler
,
B.
, and
Klocke
,
F.
,
2019
, “
Investigation of the Solubility of Liquid CO2 and Liquid Oil to Realize an Internal Single Channel Supply in Milling of Ti6Al4V
,”
Procedia Manuf.
,
33
, pp.
200
207
. 10.1016/j.promfg.2019.04.024
28.
Pimenov
,
D. Y.
,
Mia
,
M.
,
Gupta
,
M. K.
,
Machado
,
A. R.
,
Tomaz
,
Í. V.
,
Sarikaya
,
M.
, and
Wojciechowski
,
S.
,
2021
, “
Improvement of Machinability of Ti and Its Alloys Using Cooling-Lubrication Techniques: A Review and Future Prospect
,”
J. Mater. Res. Technol.
,
11
, pp.
719
753
. 10.1016/j.jmrt.2021.01.031
29.
Jamil
,
M.
,
Zhao
,
W.
,
He
,
N.
,
Gupta
,
M. K.
,
Sarikaya
,
M.
,
Khan
,
A. M.
,
Sanjay
,
M. R.
,
Siengchin
,
S.
, and
Pimenov
,
D. Y.
,
2021
, “
Sustainable Milling of Ti–6Al–4V: A Trade-Off Between Energy Efficiency, Carbon Emissions and Machining Characteristics Under MQL and Cryogenic Environment
,”
J. Cleaner Prod.
,
281
, p.
125374
. 10.1016/j.jclepro.2020.125374
30.
Mia
,
M.
,
Gupta
,
M. K.
,
Lozano
,
J. A.
,
Carou
,
D.
,
Pimenov
,
D. Y.
,
Królczyk
,
G.
,
Khan
,
A. M.
, and
Dhar
,
N. R.
,
2019
, “
Multi-Objective Optimization and Life Cycle Assessment of Eco-Friendly Cryogenic N2 Assisted Turning of Ti-6Al-4V
,”
J. Cleaner Prod.
,
210
, pp.
121
133
. 10.1016/j.jclepro.2018.10.334
31.
Pereira
,
O.
,
Català
,
P.
,
Rodríguez
,
A.
,
Ostra
,
T.
,
Vivancos
,
J.
,
Rivero
,
A.
, and
López de Lacalle
,
L. N.
, “
The Use of Hybrid CO2+MQL in Machining Operations
,”
Procedia Eng.
,
132
, pp.
492
499
. 10.1016/j.proeng.2015.12.524
32.
Pereira
,
O.
,
Celaya
,
A.
,
Urbikain
,
G.
,
Rodríguez
,
A.
,
Fernández-Valdivielso
,
A.
, and
L
ó
pez de Lacalle
,
L. N.
, “
CO2 Cryogenic Milling of Inconel 718: Cutting Forces and Tool Wear
,”
J. Mater. Res. Technol.
,
9
(
4
), pp.
8459
8468
. 10.1016/j.jmrt.2020.05.118
33.
Rodríguez-Barrero
,
S.
,
Fernández-Larrinoa
,
J.
,
Azkona
,
I.
, and
López de Lacalle
,
L. N.
, “
Enhanced Performance of Nanostructured Coatings for Drilling by Droplet Elimination
,”
Mater. Manuf. Processes
,
31
(
5
), pp.
593
602
. 10.1080/10426914.2014.973582
34.
Patel
,
K.
,
Liu
,
G.
,
Shah
,
S. R.
, and
Özel
,
T.
,
Feb
2020
, “
Effect of Micro-Textured Tool Parameters on Forces, Stresses, Wear Rate, and Variable Friction in Titanium Alloy Machining
,”
ASME J. Manuf. Sci. Eng.
,
142
(
2
), p.
021007
. 10.1115/1.4045554
35.
Sahoo
,
P.
,
Patra
,
K.
,
Singh
,
V. K.
,
Mittal
,
R. K.
, and
Singh
,
R. K.
,
Sep
2020
, “
Modeling Dynamic Stability and Cutting Forces in Micro Milling of Ti6Al4V Using Intermittent Oblique Cutting Finite Element Method Simulation-Based Force Coefficients
,”
ASME J. Manuf. Sci. Eng.
,
142
(
9
), p.
091005
. 10.1115/1.4047432
36.
Pereira
,
O.
,
Rodríguez
,
A.
,
Calleja-Ochoa
,
A.
,
Celaya
,
A.
,
López de Lacalle
,
L. N.
,
Fernandez-Valdivielso
,
A.
, and
González
,
H.
,
2021
, “
Simulation of Cryo-Cooling to Improve Super Alloys Cutting Tools
,”
Int. J. Precis. Eng. Manuf.-Green Technol.
10.1007/s40684-021-00313-y
You do not currently have access to this content.