Abstract

Quality inconsistency due to uncertainty hinders the extensive applications of a laser powder bed fusion (L-PBF) additive manufacturing process. To address this issue, this study proposes a new and efficient probabilistic method for the reliability analysis and design of the L-PBF process. The method determines a feasible region of the design space for given design requirements at specified reliability levels. If a design point falls into the feasible region, the design requirement will be satisfied with a probability higher or equal to the specified reliability. Since the problem involves the inverse reliability analysis that requires calling the direct reliability analysis repeatedly, directly using Monte Carlo simulation (MCS) is computationally intractable, especially for a high reliability requirement. In this work, a new algorithm is developed to combine MCS and the first-order reliability method (FORM). The algorithm finds the initial feasible region quickly by FORM and then updates it with higher accuracy by MCS. The method is applied to several case studies, where the normalized enthalpy criterion is used as a design requirement. The feasible regions of the normalized enthalpy criterion are obtained as contours with respect to the laser power and laser scan speed at different reliability levels, accounting for uncertainty in seven processing and material parameters. The results show that the proposed method dramatically alleviates the computational cost while maintaining high accuracy. This work provides a guidance for the process design with required reliability.

References

1.
Zhang
,
J.
, and
Jung
,
Y.-G.
,
2018
,
Additive Manufacturing: Materials, Processes, Quantifications and Applications
,
Butterworth-Heinemann
,
Oxford, UK
.
2.
Zhang
,
Y.
,
Wu
,
L.
,
Guo
,
X.
,
Kane
,
S.
,
Deng
,
Y.
,
Jung
,
Y. G.
,
Lee
,
J. H.
, and
Zhang
,
J.
,
2017
, “
Additive Manufacturing of Metallic Materials: A Review
,”
J. Mater. Eng. Perform.
,
17
, pp.
1
13
.
3.
King
,
W. E.
,
Barth
,
H. D.
,
Castillo
,
V. M.
,
Gallegos
,
G. F.
,
Gibbs
,
J. W.
,
Hahn
,
D. E.
,
Kamath
,
C.
, and
Rubenchik
,
A. M.
,
2014
, “
Observation of Keyhole-Mode Laser Melting in Laser Powder-Bed Fusion Additive Manufacturing
,”
J. Mater. Process. Technol.
,
214
(
12
), pp.
2915
2925
. 10.1016/j.jmatprotec.2014.06.005
4.
Yadroitsev
,
I.
,
Krakhmalev
,
P.
,
Yadroitsava
,
I.
,
Johansson
,
S.
, and
Smurov
,
I.
,
2013
, “
Energy Input Effect on Morphology and Microstructure of Selective Laser Melting Single Track From Metallic Powder
,”
J. Mater. Process. Technol.
,
213
(
4
), pp.
606
613
. 10.1016/j.jmatprotec.2012.11.014
5.
Guo
,
Q.
,
Zhao
,
C.
,
Escano
,
L. I.
,
Young
,
Z.
,
Xiong
,
L.
,
Fezzaa
,
K.
,
Everhart
,
W.
,
Brown
,
B.
,
Sun
,
T.
, and
Chen
,
L.
,
2018
, “
Transient Dynamics of Powder Spattering in Laser Powder Bed Fusion Additive Manufacturing Process Revealed by In-Situ High-Speed High-Energy X-Ray Imaging
,”
Acta Mater.
,
151
, pp.
169
180
. 10.1016/j.actamat.2018.03.036
6.
Parab
,
N. D.
,
Zhao
,
C.
,
Cunningham
,
R.
,
Escano
,
L. I.
,
Fezzaa
,
K.
,
Everhart
,
W.
,
Rollett
,
A. D.
,
Chen
,
L.
,
Sun
,
T.
,
Parab
,
N. D.
,
Zhao
,
C.
,
Cunningham
,
R.
,
Escano
,
L. I.
,
Fezzaa
,
K.
,
Everhart
,
W.
,
Rollett
,
A. D.
,
Chen
,
L.
, and
Sun
,
T.
,
2018
, “
Ultrafast X-Ray Imaging of Laser–Metal Additive Manufacturing Processes
,”
J. Synchrotron Radiat.
,
25
(
5
), pp.
1467
1477
. 10.1107/S1600577518009554
7.
Caggiano
,
A.
,
Zhang
,
J.
,
Alfieri
,
V.
,
Caiazzo
,
F.
,
Gao
,
R.
, and
Teti
,
R.
,
2019
, “
Machine Learning-Based Image Processing for On-Line Defect Recognition in Additive Manufacturing
,”
CIRP Ann.
,
68
(
1
), pp.
451
454
. 10.1016/j.cirp.2019.03.021
8.
Jafari-Marandi
,
R.
,
Khanzadeh
,
M.
,
Tian
,
W.
,
Smith
,
B.
, and
Bian
,
L.
,
2019
, “
From In-Situ Monitoring Toward High-Throughput Process Control: Cost-Driven Decision-Making Framework for Laser-Based Additive Manufacturing
,”
J. Manuf. Syst.
,
51
, pp.
29
41
. 10.1016/j.jmsy.2019.02.005
9.
Ye
,
D.
,
Hong
,
G. S.
,
Zhang
,
Y.
,
Zhu
,
K.
, and
Fuh
,
J. Y. H.
,
2018
, “
Defect Detection in Selective Laser Melting Technology by Acoustic Signals With Deep Belief Networks
,”
Int. J. Adv. Manuf. Technol.
,
96
(
5–8
), pp.
2791
2801
. 10.1007/s00170-018-1728-0
10.
Verma
,
A.
,
Tyagi
,
S.
, and
Yang
,
K.
,
2015
, “
Modeling and Optimization of Direct Metal Laser Sintering Process
,”
Int. J. Adv. Manuf. Technol.
,
77
(
5–8
), pp.
847
860
. 10.1007/s00170-014-6443-x
11.
Zhang
,
J.
,
Wu
,
L.
,
Zhang
,
Y.
, and
Meng
,
L.
,
2019
, “
Phase Field Simulation of Dendritic Microstructure in Additively Manufactured Titanium Alloy
,”
Met. Powder Rep.
,
74
(
1
), pp.
20
24
. 10.1016/j.mprp.2018.11.001
12.
Zhang
,
Y.
,
Xiao
,
X.
, and
Zhang
,
J.
,
2019
, “
Kinetic Monte Carlo Simulation of Sintering Behavior of Additively Manufactured Stainless Steel Powder Particles Using Reconstructed Microstructures From Synchrotron X-Ray Microtomography
,”
Results Phys.
,
13
, p.
102336
. 10.1016/j.rinp.2019.102336
13.
Zhang
,
Y.
, and
Zhang
,
J.
,
2019
, “
Modeling of Solidification Microstructure Evolution in Laser Powder Bed Fusion Fabricated 316L Stainless Steel Using Combined Computational Fluid Dynamics and Cellular Automata
,”
Addit. Manuf.
,
28
, pp.
750
765
. 10.1016/j.addma.2019.06.024
14.
Khairallah
,
S. A.
,
Anderson
,
A. T.
,
Rubenchik
,
A.
, and
King
,
W. E.
,
2016
, “
Laser Powder-Bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and Formation Mechanisms of Pores, Spatter, and Denudation Zones
,”
Acta Mater.
,
108
, pp.
36
45
. 10.1016/j.actamat.2016.02.014
15.
Zhang
,
Y.
,
Jung
,
Y.-G.
, and
Zhang
,
J.
,
2020
, “Chapter One—Multiscale and Multiphysics Modeling of Metal AM,”
Multiscale Modeling of Additively Manufactured Metals
,
Y.
Zhang
,
Y.-G.
Jung
, and
J.
Zhang
, ed.,
Elsevier
,
New York
, pp.
1
10
.
16.
Francis
,
J.
, and
Bian
,
L.
,
2019
, “
Deep Learning for Distortion Prediction in Laser-Based Additive Manufacturing Using Big Data
,”
Manuf. Lett.
,
20
, pp.
10
14
. 10.1016/j.mfglet.2019.02.001
17.
Meng
,
L.
, and
Zhang
,
J.
,
2020
, “
Process Design of Laser Powder Bed Fusion of Stainless Steel Using a Gaussian Process-Based Machine Learning Model
,”
JOM
,
72
(
1
), pp.
420
428
. 10.1007/s11837-019-03792-2
18.
Tapia
,
G.
,
Khairallah
,
S.
,
Matthews
,
M.
,
King
,
W. E.
, and
Elwany
,
A.
,
2018
, “
Gaussian Process-Based Surrogate Modeling Framework for Process Planning in Laser Powder-Bed Fusion Additive Manufacturing of 316L Stainless Steel
,”
Int. J. Adv. Manuf. Technol.
,
94
(
9–12
), pp.
3591
3603
. 10.1007/s00170-017-1045-z
19.
Tapia
,
G.
,
King
,
W.
,
Johnson
,
L.
,
Arroyave
,
R.
,
Karaman
,
I.
, and
Elwany
,
A.
,
2018
, “
Uncertainty Propagation Analysis of Computational Models in Laser Powder Bed Fusion Additive Manufacturing Using Polynomial Chaos Expansions
,”
ASME J. Manuf. Sci. Eng.
,
140
(
12
), p.
121006
. 10.1115/1.4041179
20.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2017
, “
Uncertainty Quantification and Management in Additive Manufacturing: Current Status, Needs, and Opportunities
,”
Int. J. Adv. Manuf. Technol.
,
93
(
5–8
), pp.
2855
2874
. 10.1007/s00170-017-0703-5
21.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2017
, “
Uncertainty Quantification in Prediction of Material Properties During Additive Manufacturing
,”
Scr. Mater.
,
135
, pp.
135
140
. 10.1016/j.scriptamat.2016.10.014
22.
Lopez
,
F.
,
Witherell
,
P.
, and
Lane
,
B.
,
2016
, “
Identifying Uncertainty in Laser Powder Bed Fusion Additive Manufacturing Models
,”
ASME J. Mech. Des.
,
138
(
11
), p.
114502
. 10.1115/1.4034103
23.
Meng
,
L.
,
McWilliams
,
B.
,
Jarosinski
,
W.
,
Park
,
H.-Y.
,
Jung
,
Y.-G.
,
Lee
,
J.
, and
Zhang
,
J.
,
2020
, “
Machine Learning in Additive Manufacturing: A Review
,”
JOM
,
72
(
6
), pp.
2363
2377
. 10.1007/s11837-020-04155-y
24.
Gunenthiram
,
V.
,
Peyre
,
P.
,
Schneider
,
M.
,
Dal
,
M.
,
Coste
,
F.
,
Koutiri
,
I.
, and
Fabbro
,
R.
,
2018
, “
Experimental Analysis of Spatter Generation and Melt-Pool Behavior During the Powder Bed Laser Beam Melting Process
,”
J. Mater. Process. Technol.
,
251
, pp.
376
386
. 10.1016/j.jmatprotec.2017.08.012
25.
Liu
,
Y.
,
Yang
,
Y.
,
Mai
,
S.
,
Wang
,
D.
, and
Song
,
C. J. M.
,
2015
, “
Investigation Into Spatter Behavior During Selective Laser Melting of AISI 316L Stainless Steel Powder
,”
Mater. Des.
,
87
, pp.
797
806
. 10.1016/j.matdes.2015.08.086
26.
Tapia
,
G.
,
Elwany
,
A.
, and
Sang
,
H.
,
2016
, “
Prediction of Porosity in Metal-Based Additive Manufacturing Using Spatial Gaussian Process Models
,”
Addit. Manuf.
,
12
, pp.
282
290
. 10.1016/j.addma.2016.05.009
27.
Jin
,
S.
,
Iquebal
,
A.
,
Bukkapatnam
,
S.
,
Gaynor
,
A.
, and
Ding
,
Y.
,
2019
, “
A Gaussian Process Model-Guided Surface Polishing Process in Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
142
(
1
), p.
011003
. 10.1115/1.4045334
28.
You
,
S.
,
Guan
,
J.
,
Alido
,
J.
,
Hwang
,
H. H.
,
Yu
,
R.
,
Kwe
,
L.
,
Su
,
H.
, and
Chen
,
S.
,
2020
, “
Mitigating Scattering Effects in Light-Based Three-Dimensional Printing Using Machine Learning
,”
ASME J. Manuf. Sci. Eng.
,
142
(
8
), p.
081002
. 10.1115/1.4046986
29.
Wang
,
Z.
,
Liu
,
P.
,
Xiao
,
Y.
,
Cui
,
X.
,
Hu
,
Z.
, and
Chen
,
L.
,
2019
, “
A Data-Driven Approach for Process Optimization of Metallic Additive Manufacturing Under Uncertainty
,”
ASME J. Manuf. Sci. Eng.
,
141
(
8
), p.
081004
. 10.1115/1.4043798
30.
Hann
,
D. B.
,
Iammi
,
J.
, and
Folkes
,
J.
,
2011
, “
A Simple Methodology for Predicting Laser-Weld Properties From Material and Laser Parameters
,”
J. Phys. D: Appl. Phys.
,
44
(
44
), p.
445401
. 10.1088/0022-3727/44/44/445401
31.
Du
,
X.
,
2012
, “
Reliability-Based Design Optimization With Dependent Interval Variables
,”
Int. J. Numer. Methods Eng.
,
91
(
2
), pp.
218
228
. 10.1002/nme.4275
32.
Du
,
X.
,
Sudjianto
,
A.
, and
Huang
,
B.
,
2005
, “
Reliability-Based Design With the Mixture of Random and Interval Variables
,”
J. Mech. Des.
,
127
(
6
), pp.
1068
1076
.
33.
Zhuang
,
X.
,
Pan
,
R.
, and
Du
,
X.
,
2015
, “
Enhancing Product Robustness in Reliability-Based Design Optimization
,”
Reliab. Eng. Syst. Saf.
,
138
, pp.
145
153
. 10.1016/j.ress.2015.01.026
34.
Du
,
X.
,
Chen
,
W.
, and
Wang
,
Y.
,
2010
, “
Most Probable Point-Based Methods
,”
Extreme Statistics in Nanoscale Memory Design
,
Springer
,
New York
, pp.
179
202
.
35.
Gholaminezhad
,
I.
,
Assimi
,
H.
,
Jamali
,
A.
, and
Vajari
,
D. A.
,
2016
, “
Uncertainty Quantification and Robust Modeling of Selective Laser Melting Process Using Stochastic Multi-Objective Approach
,”
Int. J. Adv. Manuf. Technol.
,
86
(
5–8
), pp.
1425
1441
. 10.1007/s00170-015-8238-0
36.
Du
,
X.
, and
Chen
,
W.
,
2004
, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
,”
ASME J. Mech. Des.
,
126
(
2
), pp.
225
233
. 10.1115/1.1649968
37.
Hasofer
,
A. M.
, and
Lind
,
N. C.
,
1974
, “
Exact and Invariant Second-Moment Code Format
,”
J. Eng. Mech. Div.
,
100
(
1
), pp.
111
121
. 10.1061/JMCEA3.0001848
38.
Rosenblatt
,
M.
,
1952
, “
Remarks on a Multivariate Transformation
,”
Ann. Math. Stat.
,
23
(
3
), pp.
470
472
. 10.1214/aoms/1177729394
39.
Ma
,
L.
,
Fong
,
J.
,
Lane
,
B.
,
Moylan
,
S.
,
Filliben
,
J.
,
Heckert
,
A.
, and
Levine
,
L.
,
2015
, “
Using Design of Experiments in Finite Element Modeling to Identify Critical Variables for Laser Powder Bed Fusion
,”
International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 10–12
.
40.
Badrossamay
,
M.
, and
Childs
,
T.
,
2007
, “
Further Studies in Selective Laser Melting of Stainless and Tool Steel Powders
,”
Int. J. Mach. Tools Manuf.
,
47
(
5
), pp.
779
784
. 10.1016/j.ijmachtools.2006.09.013
41.
Khairallah
,
S. A.
, and
Anderson
,
A.
,
2014
, “
Mesoscopic Simulation Model of Selective Laser Melting of Stainless Steel Powder
,”
J. Mater. Process. Technol.
,
214
(
11
), pp.
2627
2636
. 10.1016/j.jmatprotec.2014.06.001
42.
Kim
,
C. S.
,
1975
,
Thermophysical Properties of Stainless Steels
,
Argonne National Lab
,
Lemont, IL
.
You do not currently have access to this content.