Abstract

In aviation and navigation, complicated parts are milled with high-speed low-feed-per-tooth milling to decrease tool vibration for high quality. Because the nonlinearity of the cutting force coefficient (CFC) is more evident with the relatively smaller instantaneous uncut chip thickness, the stable critical cutting depth and its distribution against different tool postures are affected. Considering the nonlinearity, a nonlinear dynamic CFC model that reveals the effect of the dynamic instantaneous uncut chip thickness on the dynamic cutting force is derived based on the Taylor expansion. A five-axis bull-nose end milling dynamics model is established with the nonlinear dynamic CFC model. The stable critical cutting depth distribution with respect to tool posture is analyzed. The stability results predicted with the dynamic CFC model are compared with those from the static CFC model and the constant CFC model. The effects of tool posture and feed per tooth on stable critical cutting depth were also analyzed, and the proposed model was validated by cutting experiments. The maximal stable critical cutting depths that can be achieved under different tool postures by feed per tooth adjustment were calculated, and corresponding distribution diagrams are proposed for milling parameter optimization.

References

1.
Altintas
,
Y.
,
Stepan
,
G.
,
Budak
,
E.
,
Schmitz
,
T.
, and
Kilic
,
Z. M.
,
2020
, “
Chatter Stability of Machining Operations
,”
ASME J. Manuf. Sci. Eng
,
142
(
11
), p.
110801
. 10.1115/1.4047391
2.
Wan
,
M.
, and
Zhang
,
W.-H.
,
2009
, “
Systematic Study on Cutting Force Modelling Methods for Peripheral Milling
,”
Int. J. Mach. Tools Manuf.
,
49
(
5
), pp.
424
432
. 10.1016/j.ijmachtools.2008.12.004
3.
Zhang
,
X.
,
Zhang
,
J.
,
Zheng
,
X. W.
,
Pang
,
B.
, and
Zhao
,
W. H.
,
2017
, “
Tool Orientation Optimization of 5-Axis Ball-End Milling Based on an Accurate Cutter/Workpiece Engagement Model
,”
CIRP J. Manuf. Sci. Technol.
,
19
, pp.
106
116
. 10.1016/j.cirpj.2017.06.003
4.
Habibi
,
M.
,
Tuysuz
,
O.
, and
Altintas
,
Y.
,
2019
, “
Modification of Tool Orientation and Position to Compensate Tool and Part Deflections in Five-Axis Ball End Milling Operations
,”
ASME J. Manuf. Sci. Eng.
,
141
(
3
), p.
031004
. 10.1115/1.4042019
5.
Zhang
,
Z.
,
Li
,
H. G.
,
Meng
,
G.
,
Ren
,
S.
, and
Zhou
,
J. W.
,
2017
, “
A New Procedure for the Prediction of the Cutting Forces in Peripheral Milling
,”
Int. J. Adv. Manuf. Technol.
,
89
(
5–8
), pp.
1709
1715
. 10.1007/s00170-016-9186-z
6.
Mittal
,
R.
,
Maheshwari
,
C.
,
Kulkarni
,
S. S.
, and
Singh
,
R.
,
2019
, “
Effect of Progressive Tool Wear on the Evolution of the Dynamic Stability Limits in High-Speed Micromilling of Ti-6Al-4 V
,”
ASME J. Manuf. Sci. Eng.
,
141
(
11
), p.
111006
. 10.1115/1.4044713
7.
Wan
,
M.
,
Wang
,
Y. T.
,
Zhang
,
W. H.
,
Yang
,
Y.
, and
Dang
,
J. W.
,
2011
, “
Prediction of Chatter Stability for Multiple-Delay Milling System Under Different Cutting Force Models
,”
Int. J. Mach. Tools Manuf.
,
51
(
4
), pp.
281
295
. 10.1016/j.ijmachtools.2010.12.007
8.
Lu
,
X.
,
Jia
,
Z.
,
Liu
,
S.
,
Yang
,
K.
,
Feng
,
Y.
, and
Liang
,
S. Y.
,
2019
, “
Chatter Stability of Micro-Milling by Considering the Centrifugal Force and Gyroscopic Effect of the Spindle
,”
ASME J. Manuf. Sci. Eng.
,
141
(
11
), p.
111003
. 10.1115/1.4044520
9.
Elías-Zúñiga
,
A.
,
Pacheco-Bolívar
,
J.
,
Araya
,
F.
,
Martínez-López
,
A.
,
Martínez-Romero
,
O.
, and
Rodríguez
,
C. A.
,
2009
, “
Stability Predictions for end Milling Operations With a Nonlinear Cutting Force Model
,”
ASME J. Manuf. Sci. Eng.
,
131
(
6
), p.
064504
. 10.1115/1.4000450
10.
Faassen
,
R. P. H.
,
Oosterling
,
J. A.
,
Van De Wouw
,
N.
, and
Nijmeijer
,
H.
,
2007
, “
An Improved Tool Path Model Including Periodic Delay for Chatter Prediction in Milling
,”
ASME J. Comput. Nonlinear Dyn.
,
2
(
2
), pp.
167
179
. 10.1115/1.2447465
11.
Bachrathy
,
D.
,
Stépán
,
G.
, and
Turi
,
J.
,
2011
, “
State Dependent Regenerative Effect in Milling Processes
,”
ASME J. Comput. Nonlinear Dyn
,
6
(
4
), p.
041002
. 10.1115/1.4003624
12.
Yang
,
Y. Q.
,
Liu
,
Q.
, and
Zhang
,
B.
,
2014
, “
Three-Dimensional Chatter Stability Prediction of Milling Based on the Linear and Exponential Cutting Force Model
,”
Int. J. Adv. Manuf. Technol.
,
72
(
9
), pp.
1175
1185
. 10.1007/s00170-014-5703-0
13.
Totis
,
G.
,
Insperger
,
T.
,
Sortino
,
M.
, and
Stépán
,
G.
,
2019
, “
Symmetry Breaking in Milling Dynamics
,”
Int. J. Mach. Tools Manuf.
,
139
(
1
), pp.
37
59
. 10.1016/j.ijmachtools.2019.01.002
14.
Ozturk
,
E.
,
Tunc
,
L. T.
, and
Budak
,
E.
,
2009
, “
Investigation of Lead and Tilt Angle Effects in 5-Axis Ball-End Milling Processes
,”
Int. J. Mach. Tools Manuf.
,
49
(
14
), pp.
1053
1062
. 10.1016/j.ijmachtools.2009.07.013
15.
Tunc
,
L. T.
,
Budak
,
E.
,
Bilgen
,
S.
, and
Zatarain
,
M.
,
2016
, “
Process Simulation Integrated Tool Axis Selection for 5-Axis Tool Path Generation
,”
CIRP Ann. Manuf. Technol.
,
65
(
1
), pp.
381
384
. 10.1016/j.cirp.2016.04.113
16.
Ma
,
J. J.
,
Zhang
,
D. H.
,
Liu
,
Y. L.
,
Wu
,
B. H.
, and
Luo
,
M.
,
2017
, “
Tool Posture Dependent Chatter Suppression in Five-Axis Milling of Thin-Walled Workpiece With Ball-End Cutter
,”
Int. J. Adv. Manuf. Technol.
,
91
(
1–4
), pp.
287
299
.
17.
Urbikain
,
G.
,
Olvera
,
D.
, and
López de Lacalle
,
L. N.
,
2017
, “
Stability Contour Maps With Barrel Cutters Considering the Tool Orientation
,”
Int. J. Adv. Manuf. Technol.
,
89
(
9–12
), pp.
2491
2501
. 10.1007/s00170-016-9617-x
18.
Lu
,
Y. A.
,
Ding
,
Y.
, and
Zhu
,
L. M.
,
2017
, “
Dynamics and Stability Prediction of Five-Axis Flat-End Milling
,”
ASME J. Manuf. Sci. Eng.
,
139
(
6
), p.
061015
. 10.1115/1.4035422
19.
Tang
,
X.
,
Zhu
,
Z.
,
Yan
,
R.
,
Chen
,
C.
,
Peng
,
F.
,
Zhang
,
M.
, and
Li
,
Y.
,
2018
, “
Stability Prediction Based Effect Analysis of Tool Orientation on Machining Efficiency for Five-Axis Bull-Nose End Milling
,”
ASME J. Manuf. Sci. Eng.
,
140
(
12
), p.
121015
. 10.1115/1.4041426
20.
Ji
,
Y. J.
,
Wang
,
X. B.
,
Liu
,
Z. B.
,
Wang
,
H. J.
,
Wang
,
K. J.
, and
Wang
,
D. Q.
,
2019
, “
Stability Prediction of Five-Axis Ball-End Finishing Milling by Considering Multiple Interaction Effects Between the Tool and Workpiece
,”
Mech. Syst. Sig. Process
,
131
, pp.
261
287
. 10.1016/j.ymssp.2019.05.058
21.
Zhao
,
Z. Y.
,
Wang
,
S. B.
,
Wang
,
Z. H.
,
Liu
,
N.
,
Wang
,
S. L.
,
Ma
,
C.
, and
Yang
,
B.
,
2020
, “
Interference- and Chatter-Free Cutter Posture Optimization Towards Minimal Surface Roughness in Five-Axis Machining
,”
Int. J. Mech. Sci.
,
171
, p.
105395
. 10.1016/j.ijmecsci.2019.105395
22.
Zhan
,
D. N.
,
Jiang
,
S. L.
,
Niu
,
J. B.
, and
Sun
,
Y. W.
,
2020
, “
Dynamics Modeling and Stability Analysis of Five-Axis Ball-End Milling System With Variable Pitch Tools
,”
Int. J. Mech. Sci.
,
182
, p.
105774
. 10.1016/j.ijmecsci.2020.105774
23.
Li
,
J.
,
Kilic
,
Z. M.
, and
Altintas
,
Y.
,
2020
, “
General Cutting Dynamics Model for Five-Axis Ball-End Milling Operations
,”
ASME J. Manuf. Sci. Eng.
,
142
(
12
), p.
121003
. 10.1115/1.4047625
24.
Wang
,
J.
,
Luo
,
M.
,
Xu
,
K.
, and
Tang
,
K.
,
2019
, “
Generation of Tool-Life-Prolonging and Chatter-Free Efficient Toolpath for Five-Axis Milling of Freeform Surfaces
,”
ASME. J. Manuf. Sci. Eng.
,
141
(
3
), p.
031001
. 10.1115/1.4041949
25.
Zhu
,
Z. R.
,
Yan
,
R.
,
Peng
,
F. Y.
,
Duan
,
X. Y.
,
Zhou
,
L.
,
Song
,
K.
, and
Guo
,
C. Y.
,
2016
, “
Parametric Chip Thickness Model Based Cutting Forces Estimation Considering Cutter Runout of Five-Axis General End Milling
,”
Int. J. Mach. Tools Manuf.
,
101
, pp.
35
51
. 10.1016/j.ijmachtools.2015.11.001
26.
Zhu
,
Z. R.
,
Peng
,
F. Y.
,
Yan
,
R.
,
Song
,
K.
,
Li
,
Z. P.
, and
Duan
,
X. Y.
,
2017
, “
High Efficiency Simulation of Five-Axis Cutting Force Based on the Symbolically Solvable Cutting Contact Boundary Model
,”
Int. J. Adv. Manuf. Technol.
,
94
(
5–8
), pp.
2435
2455
.
27.
Duan
,
X.
,
Peng
,
F.
,
Yan
,
R.
,
Zhu
,
Z.
,
Huang
,
K.
, and
Li
,
B.
,
2016
, “
Estimation of Cutter Deflection Based on Study of Cutting Force and Static Flexibility
,”
ASME J. Manuf. Sci. Eng.
,
138
(
4
), p.
041001
. 10.1115/1.4031678
28.
Ding
,
Y.
,
Zhu
,
L. M.
,
Zhang
,
X. J.
, and
Ding
,
H.
,
2010
, “
A Full-Discretization Method for Prediction of Milling Stability
,”
Int. J. Mach. Tools Manuf.
,
50
(
5
), pp.
502
509
. 10.1016/j.ijmachtools.2010.01.003
29.
Dai
,
Y.
,
Li
,
H.
,
Xing
,
X.
, and
Hao
,
B.
,
2018
, “
Prediction of Chatter Stability for Milling Process Using Precise Integration Method
,”
Precis. Eng.
,
52
, pp.
152
157
. 10.1016/j.precisioneng.2017.12.003
30.
Huang
,
T.
,
Zhang
,
X.
,
Zhang
,
X.
, and
Ding
,
H.
,
2013
, “
An Efficient Linear Approximation of Acceleration Method for Milling Stability Prediction
,”
Int. J. Mach. Tools Manuf.
,
74
(
8
), pp.
56
64
. 10.1016/j.ijmachtools.2013.07.006
31.
Insperger
,
T.
, and
Stépán
,
G.
,
2004
, “
Updated Semi-Discretization Method for Periodic Delay-Differential Equations With Discrete Delay
,”
Int. J. Numer. Methods Eng.
,
61
(
1
), pp.
117
141
. 10.1002/nme.1061
32.
Yuwen
,
S.
, and
Shanglei
,
J.
,
2018
, “
Predictive Modeling of Chatter Stability Considering Force-Induced Deformation Effect in Milling Thin-Walled Parts
,”
Int. J. Mach. Tools Manuf.
,
123
, pp.
38
52
.
33.
Wang
,
J. J. J.
, and
Zheng
,
C. M.
,
2002
, “
Identification of Shearing and Ploughing Cutting Constants From Average Forces in Ball-End Milling
,”
Int. J. Mach. Tools Manuf.
,
42
(
6
), pp.
695
705
. 10.1016/S0890-6955(02)00002-0
You do not currently have access to this content.