Abstract

This study clarified the strain state evolution of a cylindrical cup spun from a rolled aluminum sheet in 13 passes. Measurements of radial (ɛr), circumferential (ɛθ), and thickness (ɛt) directional strains as well as forming forces revealed that the strain state evolved as follows: the cup-wall exhibits ɛr < 0 and small |ɛθ| and |ɛt| in early passes and ɛr > 0, ɛθ < 0, and ɛt < 0 in later passes; meanwhile, the cup-edge exhibits ɛr > 0 and small |ɛθ| and |ɛt| in early passes and ɛr > 0, ɛθ < 0, and ɛt > 0 in later passes. The relationship between the strain states and the forming force is interpreted as follows. The normal direction forming force, which pushes into the workpiece in the thickness direction, primarily deforms the workpieces. The radial direction forming force, toward the edge along the workpiece configuration, facilitates elongation in the radial direction of the cup-wall and results in ɛr > 0 during spinning. By contrast, a small radial direction forming force or a forming force whose direction is inverse against the roller movement direction restrains to elongate the material in the radial direction and facilitates shrinkage, thereby resulting in ɛr < 0 in the cup-edge in early passes. Furthermore, the small or inverse directional force facilitates the accumulation of the material to the edge and results in ɛt > 0 in latter passes.

References

1.
Quigley
,
E.
, and
Monaghan
,
J.
,
2002
, “
Enhanced Finite Element Models of Metal Spinning
,”
J. Mater. Process. Technol.
,
121
(
1
), pp.
43
49
. 10.1016/S0924-0136(01)01138-4
2.
Quigley
,
E.
, and
Monaghan
,
J.
,
2002
, “
The Finite Element Modelling of Conventional Spinning Using Multi-Domain Models
,”
J. Mater. Process. Technol.
,
124
(
3
), pp.
360
365
. 10.1016/S0924-0136(02)00259-5
3.
Sebastiani
,
G.
,
Brousius
,
A.
,
Ewers
,
R.
,
Kleiner
,
M.
, and
Klimmek
,
C.
,
2006
, “
Numerical Investigation on Dynamic Effects During Sheet Metal Spinning by Explicit Finite-Element-Analysis
,”
J. Mater. Process. Technol.
,
177
(
1–3
), pp.
401
403
. 10.1016/j.jmatprotec.2006.04.080
4.
Liu
,
J.H.
,
Yang
,
H.
, and
Li
,
Y.Q.
,
2002
, “
A Study of the Stress and Strain Distributions of First-Pass Conventional Spinning Under Different Roller-Traces
,”
J. Mater. Process. Technol.
,
129
(
1–3
), pp.
326
329
. 10.1016/S0924-0136(02)00682-9
5.
Shi
,
F.
,
Long
,
H.
,
Zhan
,
M.
, and
Ou
,
H.
,
2014
, “
Uncertainty Analysis on Process Responses of Conventional Spinning Using Finite Element Method
,”
J. Int. Soc. Struct. Multidiscip. Optim.
,
49
(
5
), pp.
839
850
. 10.1007/s00158-014-1061-7
6.
Wang
,
L.
, and
Long
,
H.
,
2013
, “
Roller Path Design by Tool Compensation in Multi-Pass Conventional Spinning
,”
Mater. Des.
,
46
, pp.
645
653
. 10.1016/j.matdes.2012.10.048
7.
Hayama
,
M.
,
Kudo
,
H.
, and
Shinokura
,
T.
,
1970
, “
Study on the Pass Schedule in Conventional Simple Spinning
,”
Bulletin JSME
,
13
(
65
), pp.
1358
1365
. 10.1299/jsme1958.13.1358
8.
Hayama
,
M.
,
Kudo
,
H.
, and
Murata
,
T.
,
1992
, “
Development of Roller Pass Programming for Spinning Shells of Various Shapes
,”
J. Jpn. Soc. Technol. Plast.
,
33
(
376
), pp.
510
518
.
9.
Wang
,
L.
, and
Long
,
H.
,
2011
, “
Investigation of Material Deformation in Multi-Pass Conventional Metal Spinning
,”
Mater. Des.
,
32
(
5
), pp.
2891
2899
. 10.1016/j.matdes.2010.12.021
10.
Wang
,
L.
, and
Long
,
H.
,
2011
, “
A Study of Effects of Roller Path Profiles on Tool Forces and Part Wall Thickness Variation in Conventional Metal Spinning
,”
J. Mater. Process. Technol.
,
211
(
12
), pp.
2140
2151
. 10.1016/j.jmatprotec.2011.07.013
11.
Gan
,
T.
,
Kong
,
Q.
,
Yu
,
Z.
,
Zhao
,
Y.
, and
Lai
,
X.
,
2016
, “
A Numerical Study of Multi-Pass Design Based on Bezier Curve in Conventional Spinning of Spherical Components
,”
MATEC Web Conf.
,
80
, p.
15012
. 10.1051/matecconf/20168015012
12.
Polyblank
,
J.A.
, and
Allwood
,
J.M.
,
2015
, “
Parametric Toolpath Design in Metal Spinning
,”
CIRP Ann. Manuf. Technol.
,
64
(
1
), pp.
301
304
. 10.1016/j.cirp.2015.04.077
13.
Frnčík
,
M.
,
Šugárová
,
J.
,
Šugár
,
P.
, and
Ludrovcová
,
B.
,
2018
, “
The Effect of Conventional Metal Spinning Parameters on the Spun-Part Wall Thickness Variation
,”
Mater. Sci. Eng.
,
448
(
1
), p.
012017
. 10.1088/1757-899x/448/1/012017
14.
Elkhabeery
,
M.M.
,
Fattouh
,
M.
,
Elsheikh
,
M.N.
, and
Hamed
,
O.A.
,
1991
, “
On the Conventional Simple Spinning of Cylindrical Aluminum Cups
,”
Int. J. Mach. Tools Manuf.
,
31
(
2
), pp.
203
219
. 10.1016/0890-6955(91)90005-N
15.
Xia
,
Q.
,
Shima
,
S.
,
Kotera
,
H.
, and
Yasuhuku
,
D.
,
2005
, “
A Study of the One-Path Deep Drawing Spinning of Cups
,”
J. Mater. Process. Technol.
,
159
(
3
), pp.
397
400
. 10.1016/j.jmatprotec.2004.05.027
16.
Chen
,
S.W.
,
Gao
,
P.F.
,
Zhen
,
M.
,
Ma
,
F.
,
Zhang
,
H.R.
, and
Xu
,
R.Q.
,
2019
, “
Determination of Formability Considering Wrinkling Defect in First-Pass Conventional Spinning With Linear Roller Path
,”
J. Mater. Process. Technol.
,
265
, pp.
44
55
. 10.1016/j.jmatprotec.2018.10.003
17.
Gan
,
T.
,
Yu
,
Z.Q.
,
Zhao
,
Y.X.
,
Evsyukov
,
S.A.
, and
Lai
,
X.M.
,
2018
, “
Effects of Backward Path Parameters on Formability in Conventional Spinning of Aluminum Hemispherical Parts
,”
Trans. Nonferrous Metal. Soc. China
,
28
(
2
), pp.
328
339
. 10.1016/S1003-6326(18)64666-7
18.
Salem
,
E.
,
Shin
,
J.
,
Nath
,
M.
,
Banu
,
M.
, and
Taub
,
A. I.
,
2016
, “
Investigation of Thickness Variation in Single Point Incremental Forming
,”
Proc. Manuf.
,
5
, pp.
828
837
. 10.1016/j.promfg.2016.08.068
19.
Li
,
Z.X.
, and
Shu
,
X.D.
,
2019
, “
Numerical and Experimental Analysis on Multi-Pass Conventional Spinning of the Cylindrical Part With GH3030
,”
Int. J. Adv. Manuf. Technol.
,
103
(
5–8
), pp.
2893
2901
. 10.1007/s00170-019-03767-2
20.
Gondo
,
S.
,
Arai
,
H.
,
Kajino
,
S.
, and
Nakano
,
S.
,
2020
, “
Texture Evolution of a Rolled Aluminum Sheet in Multi-Pass Conventional Spinning
,”
Metals
,
10
(
6
), pp.
793
. 10.3390/met10060793
21.
Arai
,
H.
,
2006
, “
Force-Controlled Metal Spinning Machine Using Linear Motors
,”
Proceedings of the 2006 IEEE International Conference on Robotics and Automation
,
Orlando, FL
,
May 15–18
, pp.
4031
4036
.
22.
Sugita
,
Y.
, and
Arai
,
H.
,
2015
, “
Formability in Synchronous Multipass Spinning Using Simple Pass Set
,”
J. Mater. Process. Technol.
,
217
, pp.
336
344
. 10.1016/j.jmatprotec.2014.11.017
You do not currently have access to this content.