Abstract

The presence of lattice structures is increasing in the manufacturing domain especially in the air/spacecraft and biomedical applications due to their advantages of high strength-to-weight ratios, energy absorption, acoustic and vibrational damping, etc. Dimensional accuracy of a lattice structure is one of the most important requirements to meet the desired functionality as there could be significant deviations in the as-produced part from the designed one. Evidently, an approach (non-destructive) to evaluate the dimensional accuracy of all the elements and eventually the lattice quality is of great significance. X-ray computed tomography (CT) has emerged as a promising solution in the field of industrial quality control over the last few years due to its non-destructive approach. In this work, we propose a methodology for geometrical evaluations of a lattice structure by measuring the deviation in the shape and size of its strut elements holistically. The acquired CT data of the complete lattice are extracted in the form of a point cloud and then segmented and stored as a single strut element with unique identification so that measurements can be performed on the strut individually. As demonstrated with a metallic BCCz-type lattice structure, the methodology helps in critical evaluation of its quality and the correlation with spatial position of the individual struts; e.g., the lattice exhibits large variations of shape among the inclined struts while the vertical struts possess consistency in their shape.

References

1.
Helou
,
M.
, and
Kara
,
S.
,
2018
, “
Design, Analysis and Manufacturing of Lattice Structures: An Overview
,”
Int. J. Comput. Integr. Manuf.
,
31
(
3
), pp.
243
261
. 10.1080/0951192X.2017.1407456
2.
Thompson
,
M. K.
,
Moroni
,
G.
,
Vaneker
,
T.
,
Fadel
,
G.
,
Campbell
,
R. I.
,
Gibson
,
I.
,
Bernard
,
A.
,
Schulz
,
J.
,
Graf
,
P.
,
Ahuja
,
B.
, and
Martina
,
F.
,
2016
, “
Design for Additive Manufacturing: Trends, Opportunities, Considerations, and Constraints
,”
CIRP. Ann.
,
65
(
2
), pp.
737
760
. 10.1016/j.cirp.2016.05.004
3.
Maconachie
,
T.
,
Leary
,
M.
,
Lozanovski
,
B.
,
Zhang
,
X.
,
Qian
,
M.
,
Faruque
,
O.
, and
Brandt
,
M.
,
2019
, “
SLM Lattice Structures: Properties, Performance, Applications and Challenges
,”
Mater. Des.
,
183
, p.
108137
. 10.1016/j.matdes.2019.108137
4.
Calignano
,
F.
,
Galati
,
M.
,
Iuliano
,
L.
, and
Minetola
,
P.
,
2019
, “
Design of Additively Manufactured Structures for Biomedical Applications: A Review of the Additive Manufacturing Processes Applied to the Biomedical Sector
,”
J. Healthc. Eng.
,
2019
, pp.
1
6
. 10.1155/2019/9748212
5.
Williams
,
C. B.
,
Cochran
,
J. K.
, and
Rosen
,
D. W.
,
2011
, “
Additive Manufacturing of Metallic Cellular Materials Via Three-Dimensional Printing
,”
Int. J. Adv. Manuf. Technol.
,
53
(
1–4
), pp.
231
239
. 10.1007/s00170-010-2812-2
6.
Leary
,
M.
,
Mazur
,
M.
,
Williams
,
H.
,
Yang
,
E.
,
Alghamdi
,
A.
,
Lozanovski
,
B.
,
Zhang
,
X.
,
Shidid
,
D.
,
Farahbod-Sternahl
,
L.
,
Witt
,
G.
, and
Kelbassa
,
I.
,
2018
, “
Inconel 625 Lattice Structures Manufactured by Selective Laser Melting (slm): Mechanical Properties, Deformation and Failure Modes
,”
Mater. Des.
,
157
, pp.
179
199
. 10.1016/j.matdes.2018.06.010
7.
Leach
,
R.
,
Bourell
,
D.
,
Carmignato
,
S.
,
Donmez
,
A.
,
Senin
,
N.
, and
Dewulf
,
W.
,
2019
, “
Geometrical Metrology for Metal Additive Manufacturing
,”
CIRP. Ann.
,
68
(
2
), pp.
677
700
. 10.1016/j.cirp.2019.05.004
8.
Lhuissier
,
P.
,
De Formanoir
,
C.
,
Martin
,
G.
,
Dendievel
,
R.
, and
Godet
,
S.
,
2016
, “
Geometrical Control of Lattice Structures Produced by E|BM Through Chemical Etching: Investigations At the Scale of Individual Struts
,”
Mater. Des.
,
110
, pp.
485
493
. 10.1016/j.matdes.2016.08.029
9.
Suard
,
M.
,
Martin
,
G.
,
Lhuissier
,
P.
,
Dendievel
,
R.
,
Vignat
,
F.
,
Blandin
,
J.-J.
, and
Villeneuve
,
F.
,
2015
, “
Mechanical Equivalent Diameter of Single Struts for the Stiffness Prediction of Lattice Structures Produced by Electron Beam Melting
,”
Addit. Manuf.
,
8
, pp.
124
131
. https://doi.org/10.1016/j.addma.2015.10.002
10.
Kadirgama
,
K.
,
Harun
,
W. S. W.
,
Tarlochan
,
F.
,
Samykano
,
M.
,
RamasamyMohd Zaidi Azir
,
D.
, and
Mehboob
,
H.
,
2018
, “
Statistical and Optimize of Lattice Structures With Selective Laser Melting (SLM) of Ti6Al4V Material
,”
Int. J. Adv. Additive Manuf.
,
97
(
1–4
), pp.
495
510
. 10.1007/s00170-018-1913-1
11.
Kruth
,
J. P.
,
Bartscher
,
M.
,
Carmignato
,
S.
,
Schmitt
,
R.
,
De Chiffre
,
L.
, and
Weckenmann
,
A.
,
2011
, “
Computed Tomography for Dimensional Metrology
,”
CIRP Annals-Manuf. Technol.
,
60
(
2
), pp.
821
842
. 10.1016/j.cirp.2011.05.006
12.
Hermanek
,
P.
,
Rathore
,
J. S.
,
Aloisi
,
V.
, and
Carmignato
,
S.
,
2018
,
Industrial X-Ray Computed Tomography
, 1st ed.,
Springer
,
Cham, Switzerland
, pp.
25
67
.
13.
Gorji
,
N. E.
,
Saxena
,
P.
,
Corfield
,
M. R.
,
Clare
,
A.
,
Rueff
,
J. P.
,
Bogan
,
J.
,
Gonzàlez
,
P. G.
,
Snelgrove
,
M.
,
Hughes
,
G.
,
O’Connor
,
R.
, and
Raghavendra
,
R.
,
2020
, “
A New Method for Assessing the Recyclability of Powders Within Powder Bed Fusion Process
,”
Materials Characterization
,
161
, p.
110167
. https://doi.org/10.1016/j.matchar.2020.110167
14.
Saxena
,
P.
,
Bissacco
,
G.
,
Meinert
,
K. Æ.
,
Danielak
,
A. H.
,
Ribó
,
M. M.
, and
Pedersen
,
D. B.
,
2020
, “
Soft Tooling Process Chain for the Manufacturing of Micro-Functional Features on Molds Used for Molding of Paper Bottles
,”
J. Manuf. Process.
,
54
, pp.
129
137
. 10.1016/j.jmapro.2020.03.008
15.
Saxena
,
P.
,
Bissacco
,
G.
,
Gundlach
,
C.
,
Dahl
,
V. A.
,
Trinderup
,
C. H.
, and
Dahl
,
A. B.
,
2019
, “
Process Characterization for Molding of Paper Bottles Using Computed Tomography and Structure Tensor Analysis
,”
9th Conference on Industrial Computed Tomography
,
Padova, Italy
,
Feb. 13–15
.
16.
Rathore
,
J. S.
,
Konopczyński
,
T.
,
Hesser
,
J.
,
Lucchetta
,
G.
, and
Carmignato
,
S.
,
2020
, “
Investigation on Tomographic-Based Nondestructive Characterization of Short Glass Fiber-Reinforced Composites As Obtained From Micro Injection Molding
,”
ASME J. Nondestructive Eval.
,
3
(
2
), p.
021004
. https://doi.org/10.1115/1.4046000
17.
Thompson
,
A.
,
Maskery
,
I.
, and
Leach
,
R. K.
,
2016
, “
X-Ray Computed Tomography for Additive Manufacturing: A Review
,”
Meas. Sci. Technol.
,
27
(
7
), p.
072001
. 10.1088/0957-0233/27/7/072001
18.
Van Bael
,
S.
,
Kerckhofs
,
G.
,
Moesen
,
M.
,
Pyka
,
G.
,
Schrooten
,
J.
, and
Kruth
,
J.-P.
,
2011
, “
Micro-CT-Based Improvement of Geometrical and Mechanical Controllability of Selective Laser Melted Ti6Al4V Porous Structures
,”
Mater. Sci. Eng. A.
,
528
(
24
), pp.
7423
7431
. 10.1016/j.msea.2011.06.045
19.
ISOASTM52900
,
2015
. “
Additive Manufacturing–General Principles–Terminology
.”
International Organization for Standardization, American Society for Testing and Materials
.
20.
Yan
,
C.
,
Hao
,
L.
,
Hussein
,
A.
, and
Raymont
,
D.
,
2012
, “
Evaluations of Cellular Lattice Structures Manufactured Using Selective Laser Melting
,”
Int. J. Mach. Tools. Manuf.
,
62
, pp.
32
38
. 10.1016/j.ijmachtools.2012.06.002
21.
Kim
,
T. B.
,
Yue
,
S.
,
Zhang
,
Z.
,
Jones
,
E.
,
Jones
,
J. R.
, and
Lee
,
P. D.
,
2014
, “
Additive Manufactured Porous Titanium Structures: Through-Process Quantification of Pore and Strut Networks
,”
J. Mater. Process. Technol.
,
214
(
11
), pp.
2706
2715
. 10.1016/j.jmatprotec.2014.05.006
22.
Bauza
,
M. B.
,
Moylan
,
S. P.
,
Panas
,
R. M.
,
Burke
,
S. C.
,
Martz
,
H. E.
,
Taylor
,
J. S.
,
Alexander
,
P.
,
Knebel
,
R. H.
,
Bhogaraju
,
R.
,
O’Connell
,
M. T.
, and
Smokovitz
,
J. D.
, “
Study of Accuracy of Parts Produced Using Additive Manufacturing
,”
ASPE Spring Topical Meeting--Dimensional Accuracy and Surface Finish in Additive Manufacturing
,
Berkley, CA
,
Apr. 14–16
, pp.
13
16
.
23.
Moylan
,
S. P.
, 2015, “
Progress toward Standardized Additive Manufacturing Test Artifacts
,”
ASPE 2015 Spring Topical Meeting Achieving Precision Tolerances in Additive Manufacturing
,
Raleigh, NC
,
Apr. 26-29
.
24.
Pyka
,
G.
,
Burakowski
,
A.
,
Kerckhofs
,
G.
,
Moesen
,
M.
,
Van Bael
,
S.
,
Schrooten
,
J.
, and
Wevers
,
M.
,
2012
, “
Surface Modification of Ti6Al4V Open Porous Structures Produced by Additive Manufacturing
,”
Adv. Eng. Mater.
,
14
(
6
), pp.
363
370
. 10.1002/adem.201100344
25.
Kerckhofs
,
G.
,
Pyka
,
G.
,
Moesen
,
M.
,
Van Bael
,
S.
,
Schrooten
,
J.
, and
Wevers
,
M.
,
2013
, “
High-resolution Microfocus X-ray Computed Tomography for 3D Surface Roughness Measurements of Additive Manufactured Porous Materials
,”
Adv. Eng. Mater.
,
15
(
3
), pp.
153
158
. 10.1002/adem.201200156
26.
Zanini
,
F.
,
Pagani
,
L.
,
Savio
,
E.
, and
Carmignato
,
S.
,
2019
, “
Characterisation of Additively Manufactured Metal Surfaces by Means of X-ray Computed Tomography and Generalised Surface Texture Parameters
,”
CIRP. Ann.
,
68
(
1
), pp.
515
518
. 10.1016/j.cirp.2019.04.074
27.
Thompson
,
A.
,
Senin
,
N.
,
Giusca
,
C.
, and
Leach
,
R.
,
2017
, “
Topography of Selectively Laser Melted Surfaces: A Comparison of Different Measurement Methods
,”
CIRP. Ann.
,
66
(
1
), pp.
543
546
. 10.1016/j.cirp.2017.04.075
28.
Townsend
,
A.
,
Blunt
,
L.
, and
Bills
,
P. J.
,
2016
, “
Investigating the Capability of Microfocus X-ray Computed Tomography for Areal Surface Analysis of Additively Manufactured Parts
,”
American Society for Precision Engineering Summer Topical Meeting: Dimensional Accuracy and Surface Finish in Additive Manufacturing
,
Raleigh, NC
,
June 27–30
, pp.
206
210
.
29.
Villarraga-Gómez
,
H.
,
Lee
,
C.
, and
Smith
,
S. T.
,
2018
, “
Dimensional Metrology With X-ray CT: A Comparison With Cmm Measurements on Internal Features and Compliant Structures
,”
Precis. Eng.
,
51
, pp.
291
307
. 10.1016/j.precisioneng.2017.08.021
30.
Feldkamp
,
L.
,
1997
, “
Practical Cone Beam Algorithm
,”
J. Microsc.
,
185
, pp.
67
75
. 10.1046/j.1365-2818.1997.1340694.x
31.
Lauritsch
,
G.
, and
Härer
,
W. H.
,
1998
, “
Theoretical framework for filtered back projection in tomosynthesis
,”
Medical Imaging '98
,
San Diego, CA
,
June 24
, pp.
1127
1137
.
32.
Fitzgibbon
,
A. W.
,
Pilu
,
M.
, and
Fisher
,
R. B.
,
1999
, “
Direct Least Squares Fitting of Ellipses
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
21
(
5
), pp.
476
480
. 10.1109/34.765658
33.
Rathore
,
J. S.
,
Vienne
,
C.
,
Quinsat
,
Y.
, and
Tournier
,
C.
,
2020
, “
Influence of Resolution on the X-ray CT-based Measurements of Metallic Am Lattice Structures
,”
Welding in the World
,
64
(
8
), pp.
1367
1376
. 10.1007/s40194-020-00920-4
34.
Kraemer
,
A.
,
Kovacheva
,
E.
, and
Lanza
,
G.
,
2015
, “
Projection Based Evaluation of CT Image Quality in Dimensional Metrology
,”
Digital Industrial Radiology and Computed Tomography (DIR)
,
Ghent, Belgium
,
June 22–25
.
35.
CIVA
,
2017
.
The Simulation and Analysis Platform for NDE
, http://www.extende.com/.
36.
de Pastre
,
M.-A.
,
Thompson
,
A.
,
Quinsat
,
Y.
,
García
,
J. A. A.
,
Senin
,
N.
, and
Leach
,
R.
,
2020
, “
Polymer Powder Bed Fusion Surface Texture Measurement
,”
Meas. Sci. Technol.
,
31
(
5
), p.
055002
. 10.1088/1361-6501/ab63b1
37.
Townsend
,
A.
,
Senin
,
N.
,
Blunt
,
L.
,
Leach
,
R.
, and
Taylor
,
J.
,
2016
, “
Surface Texture Metrology for Metal Additive Manufacturing: a Review
,”
Precis. Eng.
,
46
, pp.
34
47
. 10.1016/j.precisioneng.2016.06.001
38.
Senin
,
N.
,
Thompson
,
A.
, and
Leach
,
R. K.
,
2017
, “
Characterisation of the Topography of Metal Additive Surface Features With Different Measurement Technologies
,”
Meas. Sci. Technol.
,
28
(
9
), p.
095003
. 10.1088/1361-6501/aa7ce2
39.
CloudCompare
,
2019
,
3D Point Cloud and Mesh Processing Software Open Source Project
, http://www.cloudcompare.org//.
You do not currently have access to this content.